The Complexity of Homomorphism Reconstructibility

Authors Jan Böker , Louis Härtel , Nina Runde , Tim Seppelt , Christoph Standke



PDF
Thumbnail PDF

File

LIPIcs.STACS.2024.19.pdf
  • Filesize: 0.87 MB
  • 20 pages

Document Identifiers

Author Details

Jan Böker
  • RWTH Aachen University, Germany
Louis Härtel
  • RWTH Aachen University, Germany
Nina Runde
  • RWTH Aachen University, Germany
Tim Seppelt
  • RWTH Aachen University, Germany
Christoph Standke
  • RWTH Aachen University, Germany

Acknowledgements

We would like to thank Martin Grohe, Athena Riazsadri, and Jan Tönshoff for fruitful discussions.

Cite AsGet BibTex

Jan Böker, Louis Härtel, Nina Runde, Tim Seppelt, and Christoph Standke. The Complexity of Homomorphism Reconstructibility. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 19:1-19:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.STACS.2024.19

Abstract

Representing graphs by their homomorphism counts has led to the beautiful theory of homomorphism indistinguishability in recent years. Moreover, homomorphism counts have promising applications in database theory and machine learning, where one would like to answer queries or classify graphs solely based on the representation of a graph G as a finite vector of homomorphism counts from some fixed finite set of graphs to G. We study the computational complexity of the arguably most fundamental computational problem associated to these representations, the homomorphism reconstructability problem: given a finite sequence of graphs and a corresponding vector of natural numbers, decide whether there exists a graph G that realises the given vector as the homomorphism counts from the given graphs. We show that this problem yields a natural example of an NP^#𝖯-hard problem, which still can be NP-hard when restricted to a fixed number of input graphs of bounded treewidth and a fixed input vector of natural numbers, or alternatively, when restricted to a finite input set of graphs. We further show that, when restricted to a finite input set of graphs and given an upper bound on the order of the graph G as additional input, the problem cannot be NP-hard unless 𝖯 = NP. For this regime, we obtain partial positive results. We also investigate the problem’s parameterised complexity and provide fpt-algorithms for the case that a single graph is given and that multiple graphs of the same order with subgraph instead of homomorphism counts are given.

Subject Classification

ACM Subject Classification
  • Theory of computation → Graph algorithms analysis
  • Theory of computation → Parameterized complexity and exact algorithms
  • Mathematics of computing → Graph theory
Keywords
  • graph homomorphism
  • counting complexity
  • parameterised complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Samson Abramsky, Tomáš Jakl, and Thomas Paine. Discrete Density Comonads and Graph Parameters. In Helle Hvid Hansen and Fabio Zanasi, editors, Coalgebraic Methods in Computer Science, pages 23-44, Cham, 2022. Springer International Publishing. URL: https://doi.org/10.1007/978-3-031-10736-8_2.
  2. Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Applied Mathematics, 23(1):11-24, April 1989. URL: https://doi.org/10.1016/0166-218X(89)90031-0.
  3. Albert Atserias, Phokion G. Kolaitis, and Wei-Lin Wu. On the Expressive Power of Homomorphism Counts. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1-13, 2021. URL: https://doi.org/10.1109/LICS52264.2021.9470543.
  4. Jan Böker, Louis Härtel, Nina Runde, Tim Seppelt, and Christoph Standke. The complexity of homomorphism reconstructibility. CoRR, abs/2310.09009, 2023. URL: https://doi.org/10.48550/ARXIV.2310.09009.
  5. Angela Bonifati, Irena Holubová, Arnau Prat-Pérez, and Sherif Sakr. Graph Generators: State of the Art and Open Challenges. ACM Computing Surveys, 53(2):1-30, March 2021. URL: https://doi.org/10.1145/3379445.
  6. Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving graph neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(1):657-668, 2023. URL: https://doi.org/10.1109/TPAMI.2022.3154319.
  7. Surajit Chaudhuri and Moshe Y. Vardi. Optimization of Real Conjunctive Queries. In Catriel Beeri, editor, Proceedings of the Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, May 25-28, 1993, Washington, DC, USA, pages 59-70. ACM Press, 1993. URL: https://doi.org/10.1145/153850.153856.
  8. Yijia Chen, Jörg Flum, Mingjun Liu, and Zhiyang Xun. On Algorithms Based on Finitely Many Homomorphism Counts. In Stefan Szeider, Robert Ganian, and Alexandra Silva, editors, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022), volume 241 of Leibniz International Proceedings in Informatics (LIPIcs), pages 32:1-32:15, Dagstuhl, Germany, 2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.MFCS.2022.32.
  9. Radu Curticapean. Parity Separation: A Scientifically Proven Method for Permanent Weight Loss. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016), volume 55 of Leibniz International Proceedings in Informatics (LIPIcs), pages 47:1-47:14, Dagstuhl, Germany, 2016. Schloss Dagstuhlendash Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2016.47.
  10. Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms Are a Good Basis for Counting Small Subgraphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pages 210-223. Association for Computing Machinery, 2017. event-place: Montreal, Canada. URL: https://doi.org/10.1145/3055399.3055502.
  11. Radu Curticapean and Dániel Marx. Complexity of Counting Subgraphs: Only the Boundedness of the Vertex-Cover Number Counts. In Proceedings of the 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, FOCS '14, pages 130-139, USA, October 2014. IEEE Computer Society. URL: https://doi.org/10.1109/FOCS.2014.22.
  12. Víctor Dalmau and Peter Jonsson. The complexity of counting homomorphisms seen from the other side. Theoretical Computer Science, 329(1):315-323, December 2004. URL: https://doi.org/10.1016/j.tcs.2004.08.008.
  13. Peter Damaschke. Sparse solutions of sparse linear systems: Fixed-parameter tractability and an application of complex group testing. Theoretical Computer Science, 511:137-146, 2013. Exact and Parameterized Computation. URL: https://doi.org/10.1016/j.tcs.2012.07.001.
  14. Anuj Dawar, Tomás Jakl, and Luca Reggio. Lovász-Type Theorems and Game Comonads. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1-13. IEEE, 2021. URL: https://doi.org/10.1109/LICS52264.2021.9470609.
  15. Holger Dell, Martin Grohe, and Gaurav Rattan. Lovász Meets Weisfeiler and Leman. 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018), pages 40:1-40:14, 2018. URL: https://doi.org/10.4230/LIPICS.ICALP.2018.40.
  16. Zdeněk Dvořák. On recognizing graphs by numbers of homomorphisms. Journal of Graph Theory, 64(4):330-342, August 2010. URL: https://doi.org/10.1002/jgt.20461.
  17. Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2006. URL: https://doi.org/10.1007/3-540-29953-X.
  18. Michael Freedman, László Lovász, and Alexander Schrijver. Reflection positivity, rank connectivity, and homomorphism of graphs. Journal of the American Mathematical Society, 20:37-51, 2007. URL: https://doi.org/10.1090/S0894-0347-06-00529-7.
  19. M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems. Theoretical Computer Science, 1(3):237-267, February 1976. URL: https://doi.org/10.1016/0304-3975(76)90059-1.
  20. Roman Glebov, Andrzej Grzesik, Ping Hu, Tamás Hubai, Daniel Král', and Jan Volec. Densities of 3-vertex graphs, April 2017. URL: http://arxiv.org/abs/1610.02446.
  21. Martin Grohe. Counting Bounded Tree Depth Homomorphisms. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '20, pages 507-520, New York, NY, USA, 2020. Association for Computing Machinery. URL: https://doi.org/10.1145/3373718.3394739.
  22. Martin Grohe. word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings of structured data. In Dan Suciu, Yufei Tao, and Zhewei Wei, editors, Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2020, Portland, OR, USA, June 14-19, 2020, pages 1-16. ACM, 2020. URL: https://doi.org/10.1145/3375395.3387641.
  23. Martin Grohe, Gaurav Rattan, and Tim Seppelt. Homomorphism Tensors and Linear Equations. In Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 229 of Leibniz International Proceedings in Informatics (LIPIcs), pages 70:1-70:20, Dagstuhl, Germany, 2022. Schloss Dagstuhl endash Leibniz-Zentrum für Informatik. ISSN: 1868-8969. URL: https://doi.org/10.4230/LIPIcs.ICALP.2022.70.
  24. Xiaojie Guo and Liang Zhao. A Systematic Survey on Deep Generative Models for Graph Generation. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1-20, 2022. URL: https://doi.org/10.1109/TPAMI.2022.3214832.
  25. Hamed Hatami and Serguei Norine. Undecidability of linear inequalities in graph homomorphism densities. Journal of the American Mathematical Society, 24(2):547-547, May 2011. URL: https://doi.org/10.1090/S0894-0347-2010-00687-X.
  26. Lane A. Hemaspaandra and Heribert Vollmer. The satanic notations: Counting classes beyond #P and other definitional adventures. ACM SIGACT News, 26(1):2-13, March 1995. URL: https://doi.org/10.1145/203610.203611.
  27. Hao Huang, Nati Linial, Humberto Naves, Yuval Peled, and Benny Sudakov. On the 3-Local Profiles of Graphs: On the 3-Local Profiles of Graphs. Journal of Graph Theory, 76(3):236-248, July 2014. URL: https://doi.org/10.1002/jgt.21762.
  28. Yannis E. Ioannidis and Raghu Ramakrishnan. Containment of Conjunctive Queries: Beyond Relations as Sets. ACM Trans. Database Syst., 20(3):288-324, September 1995. Place: New York, NY, USA Publisher: Association for Computing Machinery. URL: https://doi.org/10.1145/211414.211419.
  29. E. Kamke. Verallgemeinerungen des Waring-Hilbertschen Satzes. Mathematische Annalen, 83(1-2):85-112, March 1921. URL: https://doi.org/10.1007/BF01464230.
  30. G. Katona. A theorem of finite sets. Theory of Graphs, Proc. Colloquium Tihany, Hungary 1966, 187-207, 1968. Google Scholar
  31. Ker-I Ko and Wen-Guey Tzeng. Three Σ₂^P-complete problems in computational learning theory. computational complexity, 1(3):269-310, September 1991. URL: https://doi.org/10.1007/BF01200064.
  32. Swastik Kopparty and Benjamin Rossman. The homomorphism domination exponent. European Journal of Combinatorics, 32(7):1097-1114, 2011. Homomorphisms and Limits. URL: https://doi.org/10.1016/j.ejc.2011.03.009.
  33. Joseph B. Kruskal. The Number of Simplices in a Complex. In Richard Bellman, editor, Mathematical Optimization Techniques, pages 251-278. University of California Press, December 1963. URL: https://doi.org/10.1525/9780520319875-014.
  34. Jarosław Kwiecień, Jerzy Marcinkowski, and Piotr Ostropolski-Nalewaja. Determinacy of Real Conjunctive Queries. The Boolean Case. In Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 347-358. Association for Computing Machinery, 2022. URL: https://doi.org/10.1145/3517804.3524168.
  35. László Lovász. Coverings and colorings of hypergraphs. Proc. 4th Southeastern Conference of Combinatorics, Graph Theory, and Computing, pages 3-12, 1973. URL: https://zbmath.org/0322.05114.
  36. László Lovász. Combinatorial problems and exercises. Akadémiai Kiado Elsevier Pub. Co, Budapest Amsterdam London, 2nd éd edition, 1993. Google Scholar
  37. László Lovász and Alexander Schrijver. Semidefinite Functions on Categories. Electron. J. Comb., 16(2), 2009. URL: https://doi.org/10.37236/80.
  38. László Lovász. Large networks and graph limits. Number volume 60 in American Mathematical Society colloquium publications. American Mathematical Society, Providence, Rhode Island, 2012. URL: https://doi.org/10.1090/coll/060.
  39. Stephen R. Mahaney. Sparse complete sets for NP: Solution of a conjecture of Berman and Hartmanis. Journal of Computer and System Sciences, 25(2):130-143, October 1982. URL: https://doi.org/10.1016/0022-0000(82)90002-2.
  40. Laura Mančinska and David E. Roberson. Quantum isomorphism is equivalent to equality of homomorphism counts from planar graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 661-672, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00067.
  41. Kenneth Manders and Leonard Adleman. NP-complete decision problems for quadratic polynomials. In Proceedings of the Eighth Annual ACM Symposium on Theory of Computing, STOC '76, pages 23-29, New York, NY, USA, May 1976. Association for Computing Machinery. URL: https://doi.org/10.1145/800113.803627.
  42. Melvyn B Nathanson. Elementary Methods in Number Theory, volume 195 of Graduate Texts in Mathematics. Springer New York, New York, NY, 2000. URL: https://doi.org/10.1007/b98870.
  43. V. I. Nečaev. On the representation of natural numbers as a sum of terms of the form x(x+1)⋯(x+n-1)/n!. Izvestiya Akad. Nauk SSSR. Ser. Mat., pages 485-498, 1953. URL: https://www.mathnet.ru/eng/im3481.
  44. V. I. Nečaev. On the question of representing natural numbers by a sum of terms of the form x(x+1)… (x+n-1)/n!. Trudy Mat. Inst. Steklov., 142:195-197, 270, 1976. Number theory, mathematical analysis and their applications. URL: https://www.mathnet.ru/eng/tm2571.
  45. Hoang Nguyen and Takanori Maehara. Graph homomorphism convolution. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages 7306-7316. PMLR, 2020. URL: http://proceedings.mlr.press/v119/nguyen20c.html.
  46. P. V. O'Neil. Ulam’s conjecture and graph reconstructions. The American Mathematical Monthly, 77(1):35-43, 1970. URL: https://doi.org/10.2307/2316851.
  47. Ken Ono, Sinai Robins, and Patrick T. Wahl. On the representation of integers as sums of triangular numbers. aequationes mathematicae, 50(1):73-94, August 1995. URL: https://doi.org/10.1007/BF01831114.
  48. Jonathan Frederick Pollock. On the extension of the principle of Fermatquoterights theorem of the polygonal numbers to the higher orders of series whose ultimate differences are constant. With a new theorem proposed, applicable to all the orders. Abstracts of the Papers Communicated to the Royal Society of London, 5:922-924, December 1851. URL: https://doi.org/10.1098/rspl.1843.0223.
  49. Alexander A. Razborov. On the Minimal Density of Triangles in Graphs. Combinatorics, Probability and Computing, 17(4):603-618, July 2008. URL: https://doi.org/10.1017/S0963548308009085.
  50. David E. Roberson. Oddomorphisms and homomorphism indistinguishability over graphs of bounded degree, June 2022. URL: http://arxiv.org/abs/2206.10321.
  51. David E. Roberson and Tim Seppelt. Lasserre Hierarchy for Graph Isomorphism and Homomorphism Indistinguishability. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023), volume 261 of Leibniz International Proceedings in Informatics (LIPIcs), pages 101:1-101:18, Dagstuhl, Germany, 2023. Schloss Dagstuhl endash Leibniz-Zentrum für Informatik. ISSN: 1868-8969. URL: https://doi.org/10.4230/LIPIcs.ICALP.2023.101.
  52. Claus-Peter Schnorr. Optimal algorithms for self-reducible problems. In S. Michaelson and Robin Milner, editors, Third International Colloquium on Automata, Languages and Programming, University of Edinburgh, UK, July 20-23, 1976, pages 322-337. Edinburgh University Press, 1976. Google Scholar
  53. Tim Seppelt. Logical Equivalences, Homomorphism Indistinguishability, and Forbidden Minors. In Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023), volume 272 of Leibniz International Proceedings in Informatics (LIPIcs), pages 82:1-82:15, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.MFCS.2023.82.
  54. Janos Simon. On Some Central Problems in Computational Complexity. PhD thesis, Cornell University, USA, 1975. Google Scholar
  55. Seinosuke Toda. PP is as Hard as the Polynomial-Time Hierarchy. SIAM Journal on Computing, 20(5):865-877, October 1991. URL: https://doi.org/10.1137/0220053.
  56. Jacobo Torán. Complexity classes defined by counting quantifiers. Journal of the ACM, 38(3):752-773, July 1991. URL: https://doi.org/10.1145/116825.116858.
  57. Klaus W. Wagner. Some observations on the connection between counting and recursion. Theoretical Computer Science, 47:131-147, January 1986. URL: https://doi.org/10.1016/0304-3975(86)90141-6.
  58. Hinrikus Wolf, Luca Oeljeklaus, Pascal Kühner, and Martin Grohe. Structural Node Embeddings with Homomorphism Counts, August 2023. URL: https://doi.org/10.48550/arXiv.2308.15283.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail