Online Simple Knapsack with Bounded Predictions

Authors Matthias Gehnen , Henri Lotze , Peter Rossmanith



PDF
Thumbnail PDF

File

LIPIcs.STACS.2024.37.pdf
  • Filesize: 0.95 MB
  • 20 pages

Document Identifiers

Author Details

Matthias Gehnen
  • RWTH Aachen University, Germany
Henri Lotze
  • RWTH Aachen University, Germany
Peter Rossmanith
  • RWTH Aachen University, Germany

Cite AsGet BibTex

Matthias Gehnen, Henri Lotze, and Peter Rossmanith. Online Simple Knapsack with Bounded Predictions. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 37:1-37:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.STACS.2024.37

Abstract

In the Online Simple Knapsack problem, an algorithm has to pack a knapsack of unit size as full as possible with items that arrive sequentially. The algorithm has no prior knowledge of the length or nature of the instance. Its performance is then measured against the best possible packing of all items of the same instance, over all possible instances. In the classical model for online computation, it is well known that there exists no constant bound for the ratio between the size of an optimal packing and the size of an online algorithm’s packing. A recent variation of the classical online model is that of predictions. In this model, an algorithm is given knowledge about the instance in advance, which is in reality distorted by some factor δ that is commonly unknown to the algorithm. The algorithm only learns about the actual nature of the elements of an input once they are revealed and an irrevocable and immediate decision has to be made. In this work, we study a slight variation of this model in which the error term, and thus the range of sizes that an announced item may actually lay in, is given to the algorithm in advance. It thus knows the range of sizes from which the actual size of each item is selected from. We find that the analysis of the Online Simple Knapsack problem under this model is surprisingly involved. For values of 0 < δ ≤ 1/7, we prove a tight competitive ratio of 2. From there on, we are able to prove that there are at least three alternating functions that describe the competitive ratio. We provide partially tight bounds for the whole range of 0 < δ < 1, showing in particular that the function of the competitive ratio depending on δ is not continuous.

Subject Classification

ACM Subject Classification
  • Theory of computation → Online algorithms
Keywords
  • Online problem
  • Simple Knapsack
  • Predictions
  • Machine-Learned Advice

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Spyros Angelopoulos, Shahin Kamali, and Kimia Shadkami. Online bin packing with predictions. In Luc De Raedt, editor, Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pages 4574-4580. ijcai.org, 2022. URL: https://doi.org/10.24963/ijcai.2022/635.
  2. Antonios Antoniadis, Christian Coester, Marek Eliás, Adam Polak, and Bertrand Simon. Online metric algorithms with untrusted predictions. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages 345-355. PMLR, 2020. URL: http://proceedings.mlr.press/v119/antoniadis20a.html.
  3. Antonios Antoniadis, Christian Coester, Marek Eliás, Adam Polak, and Bertrand Simon. Mixing predictions for online metric algorithms. CoRR, abs/2304.01781, 2023. URL: https://doi.org/10.48550/arXiv.2304.01781.
  4. David Arthur, Bodo Manthey, and Heiko Röglin. k-means has polynomial smoothed complexity. In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA, pages 405-414. IEEE Computer Society, 2009. URL: https://doi.org/10.1109/FOCS.2009.14.
  5. Yossi Azar, Stefano Leonardi, and Noam Touitou. Flow time scheduling with uncertain processing time. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1070-1080. ACM, 2021. URL: https://doi.org/10.1145/3406325.3451023.
  6. Yossi Azar, Eldad Peretz, and Noam Touitou. Distortion-oblivious algorithms for scheduling on multiple machines. In Sang Won Bae and Heejin Park, editors, 33rd International Symposium on Algorithms and Computation, ISAAC 2022, December 19-21, 2022, Seoul, Korea, volume 248 of LIPIcs, pages 16:1-16:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ISAAC.2022.16.
  7. Eric Balkanski, Vasilis Gkatzelis, and Xizhi Tan. Strategyproof scheduling with predictions. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer Science Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachusetts, USA, volume 251 of LIPIcs, pages 11:1-11:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.ITCS.2023.11.
  8. Luca Becchetti, Stefano Leonardi, Alberto Marchetti-Spaccamela, Guido Schäfer, and Tjark Vredeveld. Average case and smoothed competitive analysis of the multi-level feedback algorithm. In 44th Symposium on Foundations of Computer Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings, pages 462-471. IEEE Computer Society, 2003. URL: https://doi.org/10.1109/SFCS.2003.1238219.
  9. René Beier and Berthold Vöcking. Random knapsack in expected polynomial time. In Lawrence L. Larmore and Michel X. Goemans, editors, Proceedings of the 35th Annual ACM Symposium on Theory of Computing, June 9-11, 2003, San Diego, CA, USA, pages 232-241. ACM, 2003. URL: https://doi.org/10.1145/780542.780578.
  10. Magnus Berg, Joan Boyar, Lene M. Favrholdt, and Kim S. Larsen. Online minimum spanning trees with weight predictions. CoRR, abs/2302.12029, 2023. URL: https://doi.org/10.48550/arXiv.2302.12029.
  11. Hans-Joachim Böckenhauer, Elisabet Burjons, Juraj Hromkovic, Henri Lotze, and Peter Rossmanith. Online simple knapsack with reservation costs. In Markus Bläser and Benjamin Monmege, editors, 38th International Symposium on Theoretical Aspects of Computer Science, STACS 2021, March 16-19, 2021, Saarbrücken, Germany (Virtual Conference), volume 187 of LIPIcs, pages 16:1-16:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.STACS.2021.16.
  12. Hans-Joachim Böckenhauer, Dennis Komm, Richard Královic, and Peter Rossmanith. The online knapsack problem: Advice and randomization. Theor. Comput. Sci., 527:61-72, 2014. URL: https://doi.org/10.1016/j.tcs.2014.01.027.
  13. Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge University Press, 1998. Google Scholar
  14. Joan Boyar, Lene M. Favrholdt, Shahin Kamali, and Kim S. Larsen. Online interval scheduling with predictions. CoRR, abs/2302.13701, 2023. URL: https://doi.org/10.48550/arXiv.2302.13701.
  15. Joan Boyar, Lene M. Favrholdt, and Kim S. Larsen. Online unit profit knapsack with untrusted predictions. In Artur Czumaj and Qin Xin, editors, 18th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2022, June 27-29, 2022, Tórshavn, Faroe Islands, volume 227 of LIPIcs, pages 20:1-20:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.SWAT.2022.20.
  16. Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Faster matchings via learned duals. In Marc'Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 10393-10406, 2021. URL: https://proceedings.neurips.cc/paper/2021/hash/5616060fb8ae85d93f334e7267307664-Abstract.html.
  17. Thomas Erlebach, Murilo Santos de Lima, Nicole Megow, and Jens Schlöter. Learning-augmented query policies for minimum spanning tree with uncertainty. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman, editors, 30th Annual European Symposium on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages 49:1-49:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ESA.2022.49.
  18. Xin Han, Yasushi Kawase, Kazuhisa Makino, and Haruki Yokomaku. Online knapsack problems with a resource buffer. In Pinyan Lu and Guochuan Zhang, editors, 30th International Symposium on Algorithms and Computation, ISAAC 2019, December 8-11, 2019, Shanghai University of Finance and Economics, Shanghai, China, volume 149 of LIPIcs, pages 28:1-28:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.ISAAC.2019.28.
  19. Xin Han and Kazuhisa Makino. Online removable knapsack with limited cuts. Theor. Comput. Sci., 411(44-46):3956-3964, 2010. URL: https://doi.org/10.1016/j.tcs.2010.08.009.
  20. Sungjin Im, Ravi Kumar, Mahshid Montazer Qaem, and Manish Purohit. Online knapsack with frequency predictions. In Marc'Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 2733-2743, 2021. URL: https://proceedings.neurips.cc/paper/2021/hash/161c5c5ad51fcc884157890511b3c8b0-Abstract.html.
  21. Kazuo Iwama and Shiro Taketomi. Removable online knapsack problems. In Peter Widmayer, Francisco Triguero Ruiz, Rafael Morales Bueno, Matthew Hennessy, Stephan J. Eidenbenz, and Ricardo Conejo, editors, Automata, Languages and Programming, 29th International Colloquium, ICALP 2002, Malaga, Spain, July 8-13, 2002, Proceedings, volume 2380 of Lecture Notes in Computer Science, pages 293-305. Springer, 2002. URL: https://doi.org/10.1007/3-540-45465-9_26.
  22. Kazuo Iwama and Guochuan Zhang. Online knapsack with resource augmentation. Inf. Process. Lett., 110(22):1016-1020, 2010. URL: https://doi.org/10.1016/j.ipl.2010.08.013.
  23. Billy Jin and Will Ma. Online bipartite matching with advice: Tight robustness-consistency tradeoffs for the two-stage model. In NeurIPS, 2022. URL: http://papers.nips.cc/paper_files/paper/2022/hash/5d68a3f05ee2aae6a0fb2d94959082a0-Abstract-Conference.html.
  24. Dennis Komm. An Introduction to Online Computation - Determinism, Randomization, Advice. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2016. URL: https://doi.org/10.1007/978-3-319-42749-2.
  25. Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online scheduling via learned weights. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1859-1877. SIAM, 2020. URL: https://doi.org/10.1137/1.9781611975994.114.
  26. Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 3302-3311. PMLR, 2018. URL: http://proceedings.mlr.press/v80/lykouris18a.html.
  27. Alberto Marchetti-Spaccamela and Carlo Vercellis. Stochastic on-line knapsack problems. Math. Program., 68:73-104, 1995. URL: https://doi.org/10.1007/BF01585758.
  28. Michele Monaci, Ulrich Pferschy, and Paolo Serafini. Exact solution of the robust knapsack problem. Comput. Oper. Res., 40(11):2625-2631, 2013. URL: https://doi.org/10.1016/j.cor.2013.05.005.
  29. Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update rules. In Richard A. DeMillo, editor, Proceedings of the 16th Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1984, Washington, DC, USA, pages 488-492. ACM, 1984. URL: https://doi.org/10.1145/800057.808718.
  30. Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time. In Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis, editors, Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages 296-305. ACM, 2001. URL: https://doi.org/10.1145/380752.380813.
  31. Clemens Thielen, Morten Tiedemann, and Stephan Westphal. The online knapsack problem with incremental capacity. Math. Methods Oper. Res., 83(2):207-242, 2016. URL: https://doi.org/10.1007/s00186-015-0526-9.
  32. Chenyang Xu and Guochuan Zhang. Learning-augmented algorithms for online subset sum. J. Glob. Optim., 87(2):989-1008, 2023. URL: https://doi.org/10.1007/S10898-022-01156-W.
  33. Yunhong Zhou, Deeparnab Chakrabarty, and Rajan M. Lukose. Budget constrained bidding in keyword auctions and online knapsack problems. In Christos H. Papadimitriou and Shuzhong Zhang, editors, Internet and Network Economics, 4th International Workshop, WINE 2008, Shanghai, China, December 17-20, 2008. Proceedings, volume 5385 of Lecture Notes in Computer Science, pages 566-576. Springer, 2008. URL: https://doi.org/10.1007/978-3-540-92185-1_63.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail