Tight Approximation and Kernelization Bounds for Vertex-Disjoint Shortest Paths

Authors Matthias Bentert, Fedor V. Fomin , Petr A. Golovach



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.17.pdf
  • Filesize: 0.93 MB
  • 17 pages

Document Identifiers

Author Details

Matthias Bentert
  • University of Bergen, Norway
Fedor V. Fomin
  • University of Bergen, Norway
Petr A. Golovach
  • University of Bergen, Norway

Cite As Get BibTex

Matthias Bentert, Fedor V. Fomin, and Petr A. Golovach. Tight Approximation and Kernelization Bounds for Vertex-Disjoint Shortest Paths. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 17:1-17:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.17

Abstract

We examine the possibility of approximating Maximum Vertex-Disjoint Shortest Paths. In this problem, the input is an edge-weighted (directed or undirected) n-vertex graph G along with k terminal pairs (s_1,t_1),(s_2,t_2),…,(s_k,t_k). The task is to connect as many terminal pairs as possible by pairwise vertex-disjoint paths such that each path is a shortest path between the respective terminals. Our work is anchored in the recent breakthrough by Lochet [SODA '21], which demonstrates the polynomial-time solvability of the problem for a fixed value of k. 
Lochet’s result implies the existence of a polynomial-time ck-approximation for Maximum Vertex-Disjoint Shortest Paths, where c ≤ 1 is a constant. (One can guess 1/c terminal pairs to connect in k^O(1/c) time and then utilize Lochet’s algorithm to compute the solution in n^f(1/c) time.) Our first result suggests that this approximation algorithm is, in a sense, the best we can hope for. More precisely, assuming the gap-ETH, we exclude the existence of an o(k)-approximation within f(k) ⋅ poly(n) time for any function f that only depends on k.
Our second result demonstrates the infeasibility of achieving an approximation ratio of m^{1/2-ε} in polynomial time, unless P = NP. It is not difficult to show that a greedy algorithm selecting a path with the minimum number of arcs results in a ⌈√𝓁⌉-approximation, where 𝓁 is the number of edges in all the paths of an optimal solution. Since 𝓁 ≤ n, this underscores the tightness of the m^{1/2-ε}-inapproximability bound. 
Additionally, we establish that Maximum Vertex-Disjoint Shortest Paths is fixed-parameter tractable when parameterized by 𝓁 but does not admit a polynomial kernel. Our hardness results hold for undirected graphs with unit weights, while our positive results extend to scenarios where the input graph is directed and features arbitrary (non-negative) edge weights.

Subject Classification

ACM Subject Classification
  • Theory of computation → Approximation algorithms analysis
  • Theory of computation → Shortest paths
  • Theory of computation → Problems, reductions and completeness
  • Theory of computation → Fixed parameter tractability
Keywords
  • Inapproximability
  • Fixed-parameter tractability
  • Parameterized approximation

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Shyan Akmal, Virginia Vassilevska Williams, and Nicole Wein. Detecting disjoint shortest paths in linear time and more. In Proceedings of the 51st International Colloquium on Automata, Languages, and Programming, ICALP, pages 9:1-9:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. URL: https://doi.org/10.4230/LIPICS.ICALP.2024.9.
  2. Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM, 42(4):844-856, 1995. URL: https://doi.org/10.1145/210332.210337.
  3. Matthias Bentert, André Nichterlein, Malte Renken, and Philipp Zschoche. Using a geometric lens to find k-disjoint shortest paths. SIAM Journal on Discrete Mathematics, 37(3):1674-1703, 2023. Google Scholar
  4. Kristof Berczi and Yusuke Kobayashi. The directed disjoint shortest paths problem. In Proceedings of the 25th Annual European Symposium on Algorithms (ESA), pages 13:1-13:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.ESA.2017.13.
  5. Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds by cross-composition. SIAM Journal on Discrete Mathematics, 28(1):277-305, 2014. URL: https://doi.org/10.1137/120880240.
  6. Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin Manurangsi, Danupon Nanongkai, and Luca Trevisan. From gap-exponential time hypothesis to fixed parameter tractable inapproximability: Clique, dominating set, and more. SIAM Journal on Computing, 49(4):772-810, 2020. URL: https://doi.org/10.1137/18M1166869.
  7. Yijia Chen, Yi Feng, Bundit Laekhanukit, and Yanlin Liu. Simple combinatorial construction of the k^o(1)-lower bound for approximating the parameterized k-clique. CoRR, abs/2304.07516, 2023. URL: https://doi.org/10.48550/arXiv.2304.07516.
  8. Rajesh Chitnis, Samuel Thomas, and Anthony Wirth. Lower bounds for approximate (& exact) k-disjoint-shortest-paths. In Proceedings of the 22nd International Workshop on Approximation and Online Algorithms (WAOA), 2024. Accepted for Publication. Google Scholar
  9. Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat. Almost polynomial hardness of node-disjoint paths in grids. Theory of Computing, 17:1-57, 2021. URL: https://doi.org/10.4086/TOC.2021.V017A006.
  10. Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat. New hardness results for routing on disjoint paths. SIAM Journal on Computing, 51(2):17-189, 2022. URL: https://doi.org/10.1137/17M1146580.
  11. Julia Chuzhoy and Shi Li. A polylogarithmic approximation algorithm for edge-disjoint paths with congestion 2. Journal of the ACM, 63(5):45:1-45:51, 2016. URL: https://doi.org/10.1145/2893472.
  12. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  13. Irit Dinur. Mildly exponential reduction from gap 3SAT to polynomial-gap label-cover. Electronic Colloquium on Computational Complexity, 2016. Google Scholar
  14. Tali Eilam-Tzoreff. The disjoint shortest paths problem. Discrete Applied Mathematics, 85(2):113-138, 1998. URL: https://doi.org/10.1016/S0166-218X(97)00121-2.
  15. Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization. Cambridge University Press, Cambridge, 2019. Google Scholar
  16. Steven Fortune, John E. Hopcroft, and James Wyllie. The directed subgraph homeomorphism problem. Theoretical Computer Science, 10:111-121, 1980. URL: https://doi.org/10.1016/0304-3975(80)90009-2.
  17. M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979. Google Scholar
  18. Venkatesan Guruswami, Sanjeev Khanna, Rajmohan Rajaraman, F. Bruce Shepherd, and Mihalis Yannakakis. Near-optimal hardness results and approximation algorithms for edge-disjoint paths and related problems. Journal of Computer and System Sciences, 67(3):473-496, 2003. URL: https://doi.org/10.1016/S0022-0000(03)00066-7.
  19. Johan Håstad. Clique is hard to approximate within n^1-ε. In Proceedings of the 37th Annual Symposium on Foundations of Computer Science (FOCS), pages 627-636. IEEE Computer Society, 1996. Google Scholar
  20. Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal on Computer and Syststem Sciences, 62(2):367-375, 2001. URL: https://doi.org/10.1006/JCSS.2000.1727.
  21. Richard M. Karp. On the computational complexity of combinatorial problems. Networks, 5(1):45-68, 1975. URL: https://doi.org/10.1002/NET.1975.5.1.45.
  22. Karthik C. S. and Subhash Khot. Almost polynomial factor inapproximability for parameterized k-clique. In Proceedings of the 37th Computational Complexity Conference (CCC), pages 6:1-6:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.CCC.2022.6.
  23. Jon M. Kleinberg. Approximation algorithms for disjoint paths problems. PhD thesis, Massachusetts Institute of Technology, 1996. Google Scholar
  24. Stavros G. Kolliopoulos and Clifford Stein. Approximating disjoint-path problems using packing integer programs. Mathematical Programming, 99(1):63-87, 2004. URL: https://doi.org/10.1007/S10107-002-0370-6.
  25. William Lochet. A polynomial time algorithm for the k-disjoint shortest paths problem. In Proceedings of the 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 169-178. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.12.
  26. Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. Lossy kernelization. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 224-237. ACM, 2017. URL: https://doi.org/10.1145/3055399.3055456.
  27. Pasin Manurangsi and Prasad Raghavendra. A birthday repetition theorem and complexity of approximating dense CSPs. In Proceedings of the 44th International Colloquium on Automata, Languages, and Programming (ICALP), pages 78:1-78:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPICS.ICALP.2017.78.
  28. Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and near-optimal derandomization. In Proceedings of the 36th Annual Symposium on Foundations of Computer Science (FOCS), pages 182-191. IEEE Computer Society, 1995. URL: https://doi.org/10.1109/SFCS.1995.492475.
  29. Neil Robertson and Paul D. Seymour. Graph minors. XIII: The disjoint paths problem. Journal of Combinatorial Theory. Series B, 63(1):65-110, 1995. URL: https://doi.org/10.1006/JCTB.1995.1006.
  30. David Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic number. Theory of Computing, 3(1):103-128, 2007. URL: https://doi.org/10.4086/TOC.2007.V003A006.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail