CMSO-Transducing Tree-Like Graph Decompositions

Authors Rutger Campbell, Bruno Guillon, Mamadou Moustapha Kanté , Eun Jung Kim , Noleen Köhler



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.22.pdf
  • Filesize: 0.84 MB
  • 18 pages

Document Identifiers

Author Details

Rutger Campbell
  • Discrete Mathematics Group, Institute for Basic Science, Daejeon, South Korea
Bruno Guillon
  • Université Clermont Auvergne, Clermont Auvergne INP, LIMOS, CNRS, Clermont-Ferrand, France
Mamadou Moustapha Kanté
  • Université Clermont Auvergne, Clermont Auvergne INP, LIMOS, CNRS, Clermont-Ferrand, France
Eun Jung Kim
  • KAIST, Daejeon, South Korea
  • CNRS, France
Noleen Köhler
  • University of Leeds, UK

Cite As Get BibTex

Rutger Campbell, Bruno Guillon, Mamadou Moustapha Kanté, Eun Jung Kim, and Noleen Köhler. CMSO-Transducing Tree-Like Graph Decompositions. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 22:1-22:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.22

Abstract

We show that given a graph G we can CMSO-transduce its modular decomposition, its split decomposition and its bi-join decomposition. This improves results by Courcelle [Logical Methods in Computer Science, 2006] who gave such transductions using order-invariant MSO, a strictly more expressive logic than CMSO. Our methods more generally yield C_{2}MSO-transductions of the canonical decomposition of weakly-partitive set systems and weakly-bipartitive systems of bipartitions.

Subject Classification

ACM Subject Classification
  • Theory of computation → Finite Model Theory
Keywords
  • MSO-transduction
  • MSO-definability
  • graph decomposisions

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Hans L Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth. In Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages 226-234, 1993. URL: https://doi.org/10.1145/167088.167161.
  2. Mikołaj Bojańczyk. The category of mso transductions. CoRR, May 2023. URL: https://arxiv.org/abs/2305.18039v1.
  3. Mikołaj Bojańczyk, Martin Grohe, and Michał Pilipczuk. Definable decompositions for graphs of bounded linear cliquewidth. Log. Methods Comput. Sci., 17(1), 2021. URL: https://lmcs.episciences.org/7125.
  4. Mikołaj Bojańczyk and Michał Pilipczuk. Definability equals recognizability for graphs of bounded treewidth. In Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '16, New York, NY, USA, July 5-8, 2016, pages 407-416. ACM, 2016. URL: https://doi.org/10.1145/2933575.2934508.
  5. Andreas Brandstädt, Feodor F. Dragan, Hoàng-Oanh Le, and Raffaele Mosca. New graph classes of bounded clique-width. Theory Comput. Syst., 38(5):623-645, 2005. URL: https://doi.org/10.1007/S00224-004-1154-6.
  6. Rutger Campbell, Bruno Guillon, Mamadou Moustapha Kanté, Eun Jung Kim, and Noleen Köhler. CMSO-transducing tree-like graph decompositions, 2024. URL: https://doi.org/10.48550/arXiv.2412.04970.
  7. Michel Chein, Michel Habib, and Marie-Catherine Maurer. Partitive hypergraphs. Discrete mathematics, 37(1):35-50, 1981. URL: https://doi.org/10.1016/0012-365X(81)90138-2.
  8. Bruno Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite graphs. Information and computation, 85(1):12-75, 1990. URL: https://doi.org/10.1016/0890-5401(90)90043-H.
  9. Bruno Courcelle. The monadic second-order logic of graphs V: On closing the gap between definability and recognizability. Theoretical Computer Science, 80(2):153-202, 1991. URL: https://doi.org/10.1016/0304-3975(91)90387-H.
  10. Bruno Courcelle. The monadic second-order logic of graphs X: linear orderings. Theor. Comput. Sci., 160(1&2):87-143, 1996. URL: https://doi.org/10.1016/0304-3975(95)00083-6.
  11. Bruno Courcelle. The monadic second-order logic of graphs XI: hierarchical decompositions of connected graphs. Theor. Comput. Sci., 224(1-2):35-58, 1999. URL: https://doi.org/10.1016/S0304-3975(98)00306-5.
  12. Bruno Courcelle. The monadic second-order logic of graphs XVI: Canonical graph decompositions. Logical Methods in Computer Science, 2, 2006. URL: https://doi.org/10.2168/LMCS-2(2:2)2006.
  13. Bruno Courcelle. Canonical graph decompositions. Talk, 2012. Available at URL: https://www.labri.fr/perso/courcell/Conferences/ExpoCanDecsJuin2012.pdf.
  14. Bruno Courcelle. The atomic decomposition of strongly connected graphs. Technical report, Université de Bordeaux, 2013. Available at URL: https://www.labri.fr/perso/courcell/ArticlesEnCours/AtomicDecSubmitted.pdf.
  15. Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic. Cambridge University Press, 2009. URL: https://doi.org/10.1017/cbo9780511977619.
  16. William H Cunningham. Decomposition of directed graphs. SIAM Journal on Algebraic Discrete Methods, 3(2):214-228, 1982. Google Scholar
  17. Fabien de Montgolfier. Décomposition modulaire des graphes. Théorie, extension et algorithmes. Phd thesis, Université Montpellier II, LIRMM, 2003. Google Scholar
  18. Andrzej Ehrenfeucht, Tero Harju, and Grzegorz Rozenberg. The Theory of 2-Structures - A Framework for Decomposition and Transformation of Graphs. World Scientific, 1999. URL: http://www.worldscibooks.com/mathematics/4197.html.
  19. Daryl Funk, Dillon Mayhew, and Mike Newman. Tree automata and pigeonhole classes of matroids: I. Algorithmica, 84(7):1795-1834, 2022. URL: https://doi.org/10.1007/S00453-022-00939-7.
  20. Tobias Ganzow and Sasha Rubin. Order-invariant MSO is stronger than counting MSO in the finite. In Susanne Albers and Pascal Weil, editors, STACS 2008, 25th Annual Symposium on Theoretical Aspects of Computer Science, Bordeaux, France, February 21-23, 2008, Proceedings, volume 1 of LIPIcs, pages 313-324. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2008. URL: https://doi.org/10.4230/LIPICS.STACS.2008.1353.
  21. Michel Habib, Fabien de Montgolfier, Lalla Mouatadid, and Mengchuan Zou. A general algorithmic scheme for combinatorial decompositions with application to modular decompositions of hypergraphs. Theor. Comput. Sci., 923:56-73, 2022. URL: https://doi.org/10.1016/J.TCS.2022.04.052.
  22. Petr Hlinený. Branch-width, parse trees, and monadic second-order logic for matroids. J. Comb. Theory B, 96(3):325-351, 2006. URL: https://doi.org/10.1016/J.JCTB.2005.08.005.
  23. Michaël Rao. MSOL partitioning problems on graphs of bounded treewidth and clique-width. Theor. Comput. Sci., 377(1-3):260-267, 2007. URL: https://doi.org/10.1016/J.TCS.2007.03.043.
  24. Michaël Rao. Décompositions de graphes et algorithmes efficaces. Phd thesis, Université Paul Verlaine - Metz, 2006. Google Scholar
  25. Yann Strozecki. Monadic second-order model-checking on decomposable matroids. Discret. Appl. Math., 159(10):1022-1039, 2011. URL: https://doi.org/10.1016/J.DAM.2011.02.005.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail