LIPIcs.STACS.2025.38.pdf
- Filesize: 1.48 MB
- 17 pages
For a length n text over an alphabet of size σ, we can encode the suffix tree data structure in 𝒪(nlog σ) bits of space. It supports suffix array (SA), inverse suffix array (ISA), and longest common extension (LCE) queries in 𝒪(log^ε_σ n) time, which enables efficient pattern matching; here ε > 0 is an arbitrarily small constant. Further improvements are possible for LCE queries, where 𝒪(1) time queries can be achieved using an index of space 𝒪(nlog σ) bits. However, compactly indexing a two-dimensional text (i.e., an n× n matrix) has been a major open problem. We show progress in this direction by first presenting an 𝒪(n²log σ)-bit structure supporting LCE queries in near 𝒪((log_σ n)^{2/3}) time. We then present an 𝒪(n²log σ + n²log log n)-bit structure supporting ISA queries in near 𝒪(log n ⋅ (log_σ n)^{2/3}) time. Within a similar space, achieving SA queries in poly-logarithmic (even strongly sub-linear) time is a significant challenge. However, our 𝒪(n²log σ + n²log log n)-bit structure can support SA queries in 𝒪(n²/(σ log n)^c) time, where c is an arbitrarily large constant, which enables pattern matching in time faster than what is possible without preprocessing. We then design a repetition-aware data structure. The δ_2D compressibility measure for two-dimensional texts was recently introduced by Carfagna and Manzini [SPIRE 2023]. The measure ranges from 1 to n², with smaller δ_2D indicating a highly compressible two-dimensional text. The current data structure utilizing δ_2D allows only element access. We obtain the first structure based on δ_2D for LCE queries. It takes 𝒪^{~}(n^{5/3} + n^{8/5}δ_2D^{1/5}) space and answers queries in 𝒪(log n) time.
Feedback for Dagstuhl Publishing