Twin-Width One

Authors Jungho Ahn , Hugo Jacob , Noleen Köhler , Christophe Paul , Amadeus Reinald , Sebastian Wiederrecht



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.6.pdf
  • Filesize: 0.87 MB
  • 19 pages

Document Identifiers

Author Details

Jungho Ahn
  • Korea Institute for Advanced Study (KIAS), Seoul, South Korea
Hugo Jacob
  • LIRMM, Université de Montpellier, CNRS, Montpellier, France
Noleen Köhler
  • University of Leeds, UK
Christophe Paul
  • LIRMM, Université de Montpellier, CNRS, Montpellier, France
Amadeus Reinald
  • LIRMM, Université de Montpellier, CNRS, Montpellier, France
Sebastian Wiederrecht
  • School of Computing, KAIST, Daejeon, South Korea

Acknowledgements

The authors wish to thank the organisers of the 1st Workshop on Twin-width, which was partially financed by the grant ANR ESIGMA (ANR-17-CE23-0010) of the French National Research Agency. The second author wishes to thank Paul Bastide and Carla Groenland for interesting initial discussions on the topic of this paper.

Cite As Get BibTex

Jungho Ahn, Hugo Jacob, Noleen Köhler, Christophe Paul, Amadeus Reinald, and Sebastian Wiederrecht. Twin-Width One. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 6:1-6:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.6

Abstract

We investigate the structure of graphs of twin-width at most 1, and obtain the following results:  
- Graphs of twin-width at most 1 are permutation graphs. In particular they have an intersection model and a linear structure. 
- There is always a 1-contraction sequence closely following a given permutation diagram. 
- Based on a recursive decomposition theorem, we obtain a simple algorithm running in linear time that produces a 1-contraction sequence of a graph, or guarantees that it has twin-width more than 1. 
- We characterise distance-hereditary graphs based on their twin-width and deduce a linear time algorithm to compute optimal sequences on this class of graphs.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Combinatorial algorithms
  • Mathematics of computing → Graph algorithms
Keywords
  • Twin-width
  • Hereditary graph classes
  • Intersection model

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Jungho Ahn, Debsoumya Chakraborti, Kevin Hendrey, and Sang-il Oum. Twin-width of subdivisions of multigraphs, 2024. URL: https://doi.org/10.48550/arXiv.2306.05334.
  2. Jungho Ahn, Kevin Hendrey, Donggyu Kim, and Sang-il Oum. Bounds for the twin-width of graphs. SIAM J. Discret. Math., 36(3):2352-2366, 2022. URL: https://doi.org/10.1137/21m1452834.
  3. Jakub Balabán, Robert Ganian, and Mathis Rocton. Computing twin-width parameterized by the feedback edge number. In Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, and Daniel Lokshtanov, editors, 41st International Symposium on Theoretical Aspects of Computer Science, STACS 2024, March 12-14, 2024, Clermont-Ferrand, France, volume 289 of LIPIcs, pages 7:1-7:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. URL: https://doi.org/10.4230/LIPICS.STACS.2024.7.
  4. Jakub Balabán, Robert Ganian, and Mathis Rocton. Twin-width meets feedback edges and vertex integrity. CoRR, abs/2407.15514, 2024. URL: https://doi.org/10.48550/arXiv.2407.15514.
  5. Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding twin-width at most 4 is np-complete. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 18:1-18:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.ICALP.2022.18.
  6. Anne Bergeron, Cédric Chauve, Fabien de Montgolfier, and Mathieu Raffinot. Computing common intervals of K permutations, with applications to modular decomposition of graphs. SIAM J. Discret. Math., 22(3):1022-1039, 2008. URL: https://doi.org/10.1137/060651331.
  7. Benjamin Bergougnoux, Jakub Gajarský, Grzegorz Guspiel, Petr Hlinený, Filip Pokrývka, and Marek Sokolowski. Sparse graphs of twin-width 2 have bounded tree-width. In Satoru Iwata and Naonori Kakimura, editors, 34th International Symposium on Algorithms and Computation, ISAAC 2023, December 3-6, 2023, Kyoto, Japan, volume 283 of LIPIcs, pages 11:1-11:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.ISAAC.2023.11.
  8. Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé, and Szymon Torunczyk. Twin-width IV: ordered graphs and matrices. J. ACM, 71(3):21, 2024. URL: https://doi.org/10.1145/3651151.
  9. Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, and Stéphan Thomassé. Twin-width VI: the lens of contraction sequences. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 1036-1056. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.45.
  10. Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi Watrigant. Twin-width and polynomial kernels. Algorithmica, 84(11):3300-3337, 2022. URL: https://doi.org/10.1007/s00453-022-00965-5.
  11. Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I: Tractable FO model checking. J. ACM, 69(1):Art. 3, 46, 2022. URL: https://doi.org/10.1145/3486655.
  12. Christian Capelle, Michel Habib, and Fabien de Montgolfier. Graph decompositions andfactorizing permutations. Discret. Math. Theor. Comput. Sci., 5(1):55-70, 2002. URL: https://doi.org/10.46298/DMTCS.298.
  13. Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas. The strong perfect graph theorem. Annals of Mathematics, 164(1):51-229, July 2006. URL: https://doi.org/10.4007/annals.2006.164.51.
  14. Derek G. Corneil, Michel Habib, Jean-Marc Lanlignel, Bruce A. Reed, and Udi Rotics. Polynomial-time recognition of clique-width ≤3 graphs. Discret. Appl. Math., 160(6):834-865, 2012. URL: https://doi.org/10.1016/J.DAM.2011.03.020.
  15. Derek G Corneil, Stephan Olariu, and Lorna Stewart. Asteroidal triple-free graphs. SIAM Journal on Discrete Mathematics, 10(3):399-430, 1997. URL: https://doi.org/10.1137/S0895480193250125.
  16. Fabien de Montgolfier. Décomposition modulaire des graphes. Théorie, extension et algorithmes. (Graph Modular Decomposition. Theory, extension and algorithms). PhD thesis, Montpellier 2 University, France, 2003. URL: https://tel.archives-ouvertes.fr/tel-03711558.
  17. Ben Dushnik and E. W. Miller. Partially ordered sets. American Journal of Mathematics, 63(3):600-610, July 1941. Google Scholar
  18. Tibor Gallai. Transitiv orientierbare graphen. Acta Mathematica Academiae Scientiarum Hungaricae, 18:25-66, 1967. German. Google Scholar
  19. Colin Geniet and Stéphan Thomassé. First order logic and twin-width in tournaments. In Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman, editors, 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands, volume 274 of LIPIcs, pages 53:1-53:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.ESA.2023.53.
  20. M.C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press, 1980. Google Scholar
  21. Sylvain Guillemot and Dániel Marx. Finding small patterns in permutations in linear time. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 82-101. SIAM, 2014. URL: https://doi.org/10.1137/1.9781611973402.7.
  22. Michel Habib and Christophe Paul. A survey of the algorithmic aspects of modular decomposition. Comput. Sci. Rev., 4(1):41-59, 2010. URL: https://doi.org/10.1016/J.COSREV.2010.01.001.
  23. Ekkehard Köhler. Graphs Without Asteroidal Triples. PhD thesis, Technischen Universität Berlin, 1999. Google Scholar
  24. Ross M. McConnell and Jeremy P. Spinrad. Modular decomposition and transitive orientation. Discret. Math., 201(1-3):189-241, 1999. URL: https://doi.org/10.1016/S0012-365X(98)00319-7.
  25. Szymon Torunczyk. Flip-width: Cops and robber on dense graphs. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 663-700. IEEE, 2023. URL: https://doi.org/10.1109/FOCS57990.2023.00045.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail