Modular Counting CSP: Reductions and Algorithms

Authors Amirhossein Kazeminia, Andrei A. Bulatov



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.60.pdf
  • Filesize: 0.74 MB
  • 18 pages

Document Identifiers

Author Details

Amirhossein Kazeminia
  • Simon Fraser University, Burnaby, Canada
Andrei A. Bulatov
  • Simon Fraser University, Barnaby, Canada

Cite As Get BibTex

Amirhossein Kazeminia and Andrei A. Bulatov. Modular Counting CSP: Reductions and Algorithms. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 60:1-60:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.60

Abstract

The Constraint Satisfaction Problem (CSP) is ubiquitous in various areas of mathematics and computer science. Many of its variations have been studied including the Counting CSP, where the goal is to find the number of solutions to a CSP instance. The complexity of finding the exact number of solutions of a CSP is well understood (Bulatov, 2013, and Dyer and Richerby, 2013) and the focus has shifted to other variations of the Counting CSP such as counting the number of solutions modulo an integer. This problem has attracted considerable attention recently. In the case of CSPs based on undirected graphs Bulatov and Kazeminia (STOC 2022) obtained a complexity classification for the problem of counting solutions modulo p for arbitrary prime p. In this paper we report on the progress made towards a similar classification for the general CSP, not necessarily based on graphs.
We identify several features that make the general case very different from the graph case such as a stronger form of rigidity and the structure of automorphisms of powers of relational structures. We provide a solution algorithm in the case p = 2 that works under some additional conditions and prove the hardness of the problem under some assumptions about automorphisms of the powers of the relational structure. We also reduce the general CSP to the case that only uses binary relations satisfying strong additional conditions.

Subject Classification

ACM Subject Classification
  • Theory of computation → Problems, reductions and completeness
  • Theory of computation → Constraint and logic programming
Keywords
  • Constraint Satisfaction Problem
  • Modular Counting

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Libor Barto, Andrei Krokhin, and Ross Willard. Polymorphisms, and how to use them. In Dagstuhl Follow-Ups, volume 7. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/DFU.VOL7.15301.1.
  2. Alexander I. Barvinok. Combinatorics and Complexity of Partition Functions, volume 30 of Algorithms and combinatorics. Springer, 2016. URL: https://doi.org/10.1007/978-3-319-51829-9.
  3. Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. J. ACM, 60(5):34:1-34:41, 2013. URL: https://doi.org/10.1145/2528400.
  4. Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Chris Umans, editor, FOCS, pages 319-330, 2017. URL: https://doi.org/10.1109/FOCS.2017.37.
  5. Andrei A. Bulatov and Víctor Dalmau. A simple algorithm for Mal'tsev constraints. SIAM J. Comput., 36(1):16-27, 2006. URL: https://doi.org/10.1137/050628957.
  6. Andrei A. Bulatov and Víctor Dalmau. Towards a dichotomy theorem for the counting constraint satisfaction problem. Information and Computation, 205(5):651-678, 2007. URL: https://doi.org/10.1016/J.IC.2006.09.005.
  7. Andrei A. Bulatov and Martin Grohe. The complexity of partition functions. Theor. Comput. Sci., 348(2-3):148-186, 2005. URL: https://doi.org/10.1016/J.TCS.2005.09.011.
  8. Andrei A. Bulatov, Peter Jeavons, and Andrei A. Krokhin. Classifying the complexity of constraints using finite algebras. SIAM J. Comput., 34(3):720-742, 2005. URL: https://doi.org/10.1137/S0097539700376676.
  9. Andrei A. Bulatov and Amirhossein Kazeminia. Complexity classification of counting graph homomorphisms modulo a prime number. In STOC, pages 1024-1037. ACM, 2022. URL: https://doi.org/10.1145/3519935.3520075.
  10. Jin-Yi Cai and Xi Chen. Complexity of counting CSP with complex weights. J. ACM, 64(3), June 2017. URL: https://doi.org/10.1145/2822891.
  11. Jin-yi Cai and Lane A. Hemachandra. On the power of parity polynomial time. In Burkhard Monien and Robert Cori, editors, STACS, volume 349 of Lecture Notes in Computer Science, pages 229-239. Springer, 1989. URL: https://doi.org/10.1007/BFB0028987.
  12. Víctor Dalmau and Peter Jonsson. The complexity of counting homomorphisms seen from the other side. Theor. Comput. Sci., 329(1-3):315-323, 2004. URL: https://doi.org/10.1016/J.TCS.2004.08.008.
  13. M. Dyer and C. Greenhill. The complexity of counting graph homomorphisms. Random Structures and Algorithms, 17:260-289, 2000. URL: https://doi.org/10.1002/1098-2418(200010/12)17:3/4%3C260::AID-RSA5%3E3.0.CO;2-W.
  14. Martin Dyer and David Richerby. An effective dichotomy for the counting constraint satisfaction problem. SIAM J. on Comp, 42(3):1245-1274, 2013. URL: https://doi.org/10.1137/100811258.
  15. John Faben. The complexity of counting solutions to generalised satisfiability problems modulo k, 2008. URL: https://arxiv.org/abs/0809.1836.
  16. John Faben and Mark Jerrum. The complexity of parity graph homomorphism: an initial investigation. arXiv preprint arXiv:1309.4033, 2013. URL: https://arxiv.org/abs/1309.4033.
  17. Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput., 28(1):57-104, 1998. URL: https://doi.org/10.1137/S0097539794266766.
  18. Jacob Focke, Leslie Ann Goldberg, Marc Roth, and Stanislav Zivný. Counting homomorphisms to k₄-minor-free graphs, modulo 2. In Dániel Marx, editor, SODA, pages 2303-2314. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.137.
  19. Andreas Göbel, Leslie Ann Goldberg, and David Richerby. Counting homomorphisms to square-free graphs, modulo 2. ACM Transactions on Computation Theory (TOCT), 8(3):1-29, 2016. URL: https://doi.org/10.1145/2898441.
  20. Andreas Göbel, J. A. Gregor Lagodzinski, and Karen Seidel. Counting homomorphisms to trees modulo a prime. In MFCS, volume 117, pages 49:1-49:13, 2018. URL: https://doi.org/10.4230/LIPICS.MFCS.2018.49.
  21. Heng Guo, Sangxia Huang, Pinyan Lu, and Mingji Xia. The Complexity of Weighted Boolean #CSP Modulo k. In STACS), volume 9, pages 249-260, 2011. URL: https://doi.org/10.4230/LIPICS.STACS.2011.249.
  22. Andreas Göbel, Leslie Ann Goldberg, and David Richerby. The complexity of counting homomorphisms to cactus graphs modulo 2. ACM Trans on Comp Th, 6(4):1-29, 2014. URL: https://doi.org/10.1145/2635825.
  23. J. Hagemann and A. Mitschke. On n-permutable congruences. Algebra Universalis, 3:8-12, 1973. Google Scholar
  24. Richard Hammack, Wilfried Imrich, and Sandi Klavzar. Handbook of Product Graphs, Second Edition. CRC Press, Inc., USA, 2nd edition, 2011. Google Scholar
  25. Ulrich Hertrampf. Relations among mod-classes. Theor. Comput. Sci., 74(3):325-328, 1990. URL: https://doi.org/10.1016/0304-3975(90)90081-R.
  26. Peter Jeavons. On the algebraic structure of combinatorial problems. Theoretical Computer Science, 200(1-2):185-204, 1998. URL: https://doi.org/10.1016/S0304-3975(97)00230-2.
  27. Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for the Ising model. SIAM J. Comput., 22(5):1087-1116, 1993. URL: https://doi.org/10.1137/0222066.
  28. Amirhossein Kazeminia and Andrei A Bulatov. Counting homomorphisms modulo a prime number. In MFCS. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. Google Scholar
  29. Amirhossein Kazeminia and Andrei A. Bulatov. Modular counting csp: Reductions and algorithms, 2025. URL: https://arxiv.org/abs/2501.04224.
  30. Phokion G Kolaitis. Constraint satisfaction, complexity, and logic. In Hellenic Conference on Artificial Intelligence, pages 1-2. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-24674-9_1.
  31. J. A. Gregor Lagodzinski, Andreas Göbel, Katrin Casel, and Tobias Friedrich. On counting (quantum-)graph homomorphisms in finite fields of prime order. CoRR, abs/2011.04827, 2021. URL: https://arxiv.org/abs/2011.04827.
  32. E.H. Lieb and A.D. Sokal. A general Lee-Yang theorem for one-component and multicomponent ferromagnets. Communications in Mathematical Physics, 80(2):153-179, 1981. Google Scholar
  33. L. Valiant. The complexity of computing the permanent. Theoretical Computing Science, 8:189-201, 1979. URL: https://doi.org/10.1016/0304-3975(79)90044-6.
  34. L. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on Computing, 8(3):410-421, 1979. URL: https://doi.org/10.1137/0208032.
  35. Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1-30:78, 2020. URL: https://doi.org/10.1145/3402029.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail