Cluster Editing on Cographs and Related Classes

Authors Manuel Lafond , Alitzel López Sánchez , Weidong Luo



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.64.pdf
  • Filesize: 0.91 MB
  • 21 pages

Document Identifiers

Author Details

Manuel Lafond
  • Department of Computer Science, Université de Sherbrooke, Canada
Alitzel López Sánchez
  • Department of Computer Science, Université de Sherbrooke, Canada
Weidong Luo
  • Department of Computer Science, Université de Sherbrooke, Canada

Acknowledgements

We thank the anonymous reviewers for their valuable comments.

Cite As Get BibTex

Manuel Lafond, Alitzel López Sánchez, and Weidong Luo. Cluster Editing on Cographs and Related Classes. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 64:1-64:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.64

Abstract

In the Cluster Editing problem, sometimes known as (unweighted) Correlation Clustering, we must insert and delete a minimum number of edges to achieve a graph in which every connected component is a clique. Owing to its applications in computational biology, social network analysis, machine learning, and others, this problem has been widely studied for decades and is still undergoing active research. There exist several parameterized algorithms for general graphs, but little is known about the complexity of the problem on specific classes of graphs.
Among the few important results in this direction, if only deletions are allowed, the problem can be solved in polynomial time on cographs, which are the P₄-free graphs. However, the complexity of the broader editing problem on cographs is still open. We show that even on a very restricted subclass of cographs, the problem is NP-hard, W[1]-hard when parameterized by the number p of desired clusters, and that time n^o(p/log p) is forbidden under the ETH. This shows that the editing variant is substantially harder than the deletion-only case, and that hardness holds for the many superclasses of cographs (including graphs of clique-width at most 2, perfect graphs, circle graphs, permutation graphs). On the other hand, we provide an almost tight upper bound of time n^O(p), which is a consequence of a more general n^O(cw⋅p) time algorithm, where cw is the clique-width. Given that forbidding P₄s maintains NP-hardness, we look at {P₄, C₄}-free graphs, also known as trivially perfect graphs, and provide a cubic-time algorithm for this class.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
Keywords
  • Cluster editing
  • cographs
  • parameterized algorithms
  • clique-width
  • trivially perfect graphs

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Faisal N Abu-Khzam, Joseph R Barr, Amin Fakhereldine, and Peter Shaw. A greedy heuristic for cluster editing with vertex splitting. In 2021 4th International conference on artificial intelligence for industries (AI4I), pages 38-41. IEEE, 2021. URL: https://doi.org/10.1109/AI4I51902.2021.00017.
  2. Emmanuel Arrighi, Matthias Bentert, Pål Grønås Drange, Blair D Sullivan, and Petra Wolf. Cluster editing with overlapping communities. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2023. Google Scholar
  3. Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine learning, 56:89-113, 2004. URL: https://doi.org/10.1023/B:MACH.0000033116.57574.95.
  4. Hila Becker. A survey of correlation clustering. Advanced Topics in Computational Learning Theory, pages 1-10, 2005. Google Scholar
  5. André Berger, Alexander Grigoriev, and Andrej Winokurow. A PTAS for the cluster editing problem on planar graphs. In International Workshop on Approximation and Online Algorithms, pages 27-39. Springer, 2016. URL: https://doi.org/10.1007/978-3-319-51741-4_3.
  6. Sebastian Böcker. A golden ratio parameterized algorithm for cluster editing. J. Discrete Algorithms, 16:79-89, 2012. URL: https://doi.org/10.1016/J.JDA.2012.04.005.
  7. Sebastian Böcker, Sebastian Briesemeister, Quang Bao Anh Bui, and Anke Truß. Going weighted: Parameterized algorithms for cluster editing. Theor. Comput. Sci., 410(52):5467-5480, 2009. URL: https://doi.org/10.1016/J.TCS.2009.05.006.
  8. Sebastian Böcker and Peter Damaschke. Even faster parameterized cluster deletion and cluster editing. Inf. Process. Lett., 111(14):717-721, 2011. URL: https://doi.org/10.1016/J.IPL.2011.05.003.
  9. Flavia Bonomo, Guillermo Duran, and Mario Valencia-Pabon. Complexity of the cluster deletion problem on subclasses of chordal graphs. Theoretical Computer Science, 600:59-69, 2015. URL: https://doi.org/10.1016/J.TCS.2015.07.001.
  10. Ulrik Brandes, Michael Hamann, Ben Strasser, and Dorothea Wagner. Fast quasi-threshold editing. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, volume 9294 of Lecture Notes in Computer Science, pages 251-262. Springer, 2015. URL: https://doi.org/10.1007/978-3-662-48350-3_22.
  11. Yixin Cao and Jianer Chen. Cluster editing: Kernelization based on edge cuts. Algorithmica, 64(1):152-169, 2012. URL: https://doi.org/10.1007/S00453-011-9595-1.
  12. Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative information. In FOCS 2003, 11-14 October 2003, Cambridge, MA, USA, Proceedings, pages 524-533. IEEE Computer Society, 2003. URL: https://doi.org/10.1109/SFCS.2003.1238225.
  13. Jianer Chen and Jie Meng. A 2k kernel for the cluster editing problem. J. Comput. Syst. Sci., 78(1):211-220, 2012. URL: https://doi.org/10.1016/J.JCSS.2011.04.001.
  14. Derek G. Corneil, Yehoshua Perl, and Lorna K. Stewart. A linear recognition algorithm for cographs. SIAM J. Comput., 14(4):926-934, 1985. URL: https://doi.org/10.1137/0214065.
  15. Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete Applied Mathematics, 101(1-3):77-114, 2000. URL: https://doi.org/10.1016/S0166-218X(99)00184-5.
  16. Nameirakpam Dhanachandra, Khumanthem Manglem, and Yambem Jina Chanu. Image segmentation using k-means clustering algorithm and subtractive clustering algorithm. Procedia Computer Science, 54:764-771, 2015. Google Scholar
  17. Wolfgang Espelage, Frank Gurski, and Egon Wanke. Deciding clique-width for graphs of bounded tree-width. Journal of Graph Algorithms and Applications, 7(2):141-180, 2003. URL: https://doi.org/10.7155/JGAA.00065.
  18. Absalom E Ezugwu, Abiodun M Ikotun, Olaide O Oyelade, Laith Abualigah, Jeffery O Agushaka, Christopher I Eke, and Andronicus A Akinyelu. A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Engineering Applications of Artificial Intelligence, 110:104743, 2022. URL: https://doi.org/10.1016/J.ENGAPPAI.2022.104743.
  19. Fedor V. Fomin, Stefan Kratsch, Marcin Pilipczuk, Michal Pilipczuk, and Yngve Villanger. Tight bounds for parameterized complexity of cluster editing with a small number of clusters. J. Comput. Syst. Sci., 80(7):1430-1447, 2014. URL: https://doi.org/10.1016/J.JCSS.2014.04.015.
  20. Jakub Gajarskỳ, Michael Lampis, and Sebastian Ordyniak. Parameterized algorithms for modular-width. In IPEC 2013, Sophia Antipolis, France, September 4-6, 2013, Revised Selected Papers 8, pages 163-176. Springer, 2013. Google Scholar
  21. Yong Gao, Donovan R. Hare, and James Nastos. The cluster deletion problem for cographs. Discret. Math., 313(23):2763-2771, 2013. URL: https://doi.org/10.1016/J.DISC.2013.08.017.
  22. M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979. Google Scholar
  23. Ioannis Giotis and Venkatesan Guruswami. Correlation clustering with a fixed number of clusters. Theory Comput., 2(13):249-266, 2006. URL: https://doi.org/10.4086/TOC.2006.V002A013.
  24. Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Graph-modeled data clustering: Fixed-parameter algorithms for clique generation. In Rossella Petreschi, Giuseppe Persiano, and Riccardo Silvestri, editors, CIAC 2003, Rome, Italy, May 28-30, 2003, Proceedings, volume 2653 of Lecture Notes in Computer Science, pages 108-119. Springer, 2003. URL: https://doi.org/10.1007/3-540-44849-7_17.
  25. Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Automated generation of search tree algorithms for hard graph modification problems. Algorithmica, 39(4):321-347, 2004. URL: https://doi.org/10.1007/S00453-004-1090-5.
  26. Jiong Guo. A more effective linear kernelization for cluster editing. Theor. Comput. Sci., 410(8-10):718-726, 2009. URL: https://doi.org/10.1016/J.TCS.2008.10.021.
  27. Frank Gurski, Egon Wanke, and Eda Yilmaz. Directed NLC-width. Theor. Comput. Sci., 616:1-17, 2016. URL: https://doi.org/10.1016/J.TCS.2015.11.003.
  28. P Heggernes and D Kratsch. Linear-time certifying algorithms for recognizing trivially perfect graphs. Reports In Informatics ISSN, pages 0333-3590, 2006. Google Scholar
  29. Marc Hellmuth, Maribel Hernandez-Rosales, Katharina T Huber, Vincent Moulton, Peter F Stadler, and Nicolas Wieseke. Orthology relations, symbolic ultrametrics, and cographs. Journal of mathematical biology, 66:399-420, 2013. Google Scholar
  30. Marc Hellmuth, Nicolas Wieseke, Marcus Lechner, Hans-Peter Lenhof, Martin Middendorf, and Peter F Stadler. Phylogenomics with paralogs. Proceedings of the National Academy of Sciences, 112(7):2058-2063, 2015. Google Scholar
  31. Giuseppe F Italiano, Athanasios L Konstantinidis, and Charis Papadopoulos. Structural parameterization of cluster deletion. In International Conference and Workshops on Algorithms and Computation, pages 371-383. Springer, 2023. URL: https://doi.org/10.1007/978-3-031-27051-2_31.
  32. Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing with fixed number of bins revisited. J. Comput. Syst. Sci., 79(1):39-49, 2013. URL: https://doi.org/10.1016/J.JCSS.2012.04.004.
  33. Songwei Jia, Lin Gao, Yong Gao, James Nastos, Yijie Wang, Xindong Zhang, and Haiyang Wang. Defining and identifying cograph communities in complex networks. New Journal of Physics, 17(1):013044, 2015. Google Scholar
  34. Ojvind Johansson. Clique-decomposition, NLC-decomposition, and modular decomposition-relationships and results for random graphs. Congressus Numerantium, pages 39-60, 1998. Google Scholar
  35. Christian Komusiewicz and Johannes Uhlmann. Cluster editing with locally bounded modifications. Discrete Applied Mathematics, 160(15):2259-2270, 2012. URL: https://doi.org/10.1016/J.DAM.2012.05.019.
  36. Athanasios L Konstantinidis and Charis Papadopoulos. Cluster deletion on interval graphs and split related graphs. Algorithmica, 83(7):2018-2046, 2021. URL: https://doi.org/10.1007/S00453-021-00817-8.
  37. Mirko Krivánek and Jaroslav Morávek. NP-hard problems in hierarchical-tree clustering. Acta Informatica, 23(3):311-323, 1986. URL: https://doi.org/10.1007/BF00289116.
  38. Manuel Lafond and Nadia El-Mabrouk. Orthology and paralogy constraints: satisfiability and consistency. BMC genomics, 15:1-10, 2014. Google Scholar
  39. Manuel Lafond and Weidong Luo. Parameterized complexity of domination problems using restricted modular partitions. In Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors, MFCS 2023, volume 272 of Leibniz International Proceedings in Informatics (LIPIcs), pages 61:1-61:14, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.MFCS.2023.61.
  40. Manuel Lafond, Mona Meghdari Miardan, and David Sankoff. Accurate prediction of orthologs in the presence of divergence after duplication. Bioinformatics, 34(13):i366-i375, 2018. URL: https://doi.org/10.1093/BIOINFORMATICS/BTY242.
  41. Bassel Mannaa. Cluster editing problem for points on the real line: A polynomial time algorithm. Information processing letters, 110(21):961-965, 2010. URL: https://doi.org/10.1016/J.IPL.2010.08.002.
  42. James Nastos and Yong Gao. Familial groups in social networks. Soc. Networks, 35(3):439-450, 2013. URL: https://doi.org/10.1016/J.SOCNET.2013.05.001.
  43. Sebastian Ochs. Cluster Deletion on Unit Disk Graphs. Master’s thesis, Philipps-Universität Marburg, 2023. Google Scholar
  44. Alitzel López Sánchez and Manuel Lafond. Colorful orthology clustering in bounded-degree similarity graphs. Journal of Bioinformatics and Computational Biology, 19(06):2140010, 2021. Google Scholar
  45. Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modification problems. Discret. Appl. Math., 144(1-2):173-182, 2004. URL: https://doi.org/10.1016/J.DAM.2004.01.007.
  46. Nate Veldt, David F Gleich, and Anthony Wirth. A correlation clustering framework for community detection. In Proceedings of the 2018 World Wide Web Conference, pages 439-448, 2018. URL: https://doi.org/10.1145/3178876.3186110.
  47. Charles T Zahn, Jr. Approximating symmetric relations by equivalence relations. Journal of the Society for Industrial and Applied Mathematics, 12(4):840-847, 1964. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail