LIPIcs.STACS.2025.65.pdf
- Filesize: 0.85 MB
- 19 pages
The Parameterized Inapproximability Hypothesis (PIH) asserts that no FPT algorithm can decide whether a given 2CSP instance parameterized by the number of variables is satisfiable, or at most a constant fraction of its constraints can be satisfied simultaneously. In a recent breakthrough, Guruswami, Lin, Ren, Sun, and Wu (STOC 2024) proved the PIH under the Exponential Time Hypothesis (ETH). However, it remains a major open problem whether the PIH can be established assuming only W[1]≠FPT. Towards this goal, Guruswami, Ren, and Sandeep (CCC 2024) showed a weaker version of the PIH called the Baby PIH under W[1]≠FPT. In addition, they proposed one more intermediate assumption known as the Average Baby PIH, which might lead to further progress on the PIH. As the main contribution of this paper, we prove that the Average Baby PIH holds assuming W[1]≠FPT. Given a 2CSP instance where the number of its variables is the parameter, the Average Baby PIH states that no FPT algorithm can decide whether (i) it is satisfiable or (ii) any multi-assignment that satisfies all constraints must assign each variable more than r values on average for any fixed constant r > 1. So there is a gap between (i) and (ii) on the average number of values that are assigned to a variable, i.e., 1 vs. r. If this gap occurs in each variable instead of on average, we get the original Baby PIH. So central to our paper is an FPT self-reduction for 2CSP instances that turns the above gap for each variable into a gap on average. By the known W[1]-hardness for the Baby PIH, this proves that the Average Baby PIH holds under W[1] ≠ FPT. As applications, we obtain (i) for the first time, the W[1]-hardness of constant approximating k-ExactCover, and (ii) a tight relationship between running time lower bounds in the Average Baby PIH and approximating the parameterized Nearest Codeword Problem (k-NCP).
Feedback for Dagstuhl Publishing