Faster Edge Coloring by Partition Sieving

Authors Shyan Akmal , Tomohiro Koana



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.7.pdf
  • Filesize: 0.83 MB
  • 18 pages

Document Identifiers

Author Details

Shyan Akmal
  • INSAIT, Sofia University "St. Kliment Ohridski", Bulgaria
Tomohiro Koana
  • Utrecht University, The Netherlands
  • Research Institute for Mathematical Sciences, Kyoto University, Japan

Acknowledgements

We thank the anonymous reviewers for helpful feedback on this work.

Cite As Get BibTex

Shyan Akmal and Tomohiro Koana. Faster Edge Coloring by Partition Sieving. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 7:1-7:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.7

Abstract

In the Edge Coloring problem, we are given an undirected graph G with n vertices and m edges, and are tasked with finding the smallest positive integer k so that the edges of G can be assigned k colors in such a way that no two edges incident to the same vertex are assigned the same color. Edge Coloring is a classic NP-hard problem, and so significant research has gone into designing fast exponential-time algorithms for solving Edge Coloring and its variants exactly. Prior work showed that Edge Coloring can be solved in 2^mpoly(n) time and polynomial space, and in graphs with average degree d in 2^{(1-ε_d)m}⋅poly(n) time and exponential space, where ε_d = (1/d)^Θ(d³).
We present an algorithm that solves Edge Coloring in 2^{m-3n/5}⋅poly(n) time and polynomial space. Our result is the first algorithm for this problem which simultaneously runs in faster than 2^m⋅poly(m) time and uses only polynomial space. In graphs of average degree d, our algorithm runs in 2^{(1-6/(5d))m}⋅poly(n) time, which has far better dependence in d than previous results. We also consider a generalization of Edge Coloring called List Edge Coloring, where each edge e in the input graph comes with a list L_e ⊆ {1, …, k} of colors, and we must determine whether we can assign each edge a color from its list so that no two edges incident to the same vertex receive the same color. We show that this problem can be solved in 2^{(1-6/(5k))m}⋅poly(n) time and polynomial space. The previous best algorithm for List Edge Coloring took 2^m⋅poly(n) time and space. 
Our algorithms are algebraic, and work by constructing a special polynomial P based off the input graph that contains a multilinear monomial (i.e., a monomial where every variable has degree at most one) if and only if the answer to the List Edge Coloring problem on the input graph is YES. We then solve the problem by detecting multilinear monomials in P. Previous work also employed such monomial detection techniques to solve Edge Coloring. We obtain faster algorithms both by carefully constructing our polynomial P, and by improving the runtimes for certain structured monomial detection problems using a technique we call partition sieving.

Subject Classification

ACM Subject Classification
  • Theory of computation → Graph algorithms analysis
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • Coloring
  • Edge coloring
  • Chromatic index
  • Matroid
  • Pfaffian
  • Algebraic algorithm

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Vladimir I Arnautov. Estimation of the exterior stability number of a graph by means of the minimal degree of the vertices. Prikl. Mat. i Programmirovanie, 11(3-8):126, 1974. Google Scholar
  2. Sepehr Assadi, Soheil Behnezhad, Sayan Bhattacharya, Martín Costa, Shay Solomon, and Tianyi Zhang. Vizing’s theorem in near-linear time, 2024. URL: https://arxiv.org/abs/2410.05240.
  3. Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. Distributed edge coloring in time polylogarithmic in Δ. In Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing, PODC ’22, pages 15-25. ACM, July 2022. URL: https://doi.org/10.1145/3519270.3538440.
  4. Lowell W Beineke. Derived graphs and digraphs. Beiträge zur graphentheorie, pages 17-33, 1968. Google Scholar
  5. Anton Bernshteyn. A fast distributed algorithm for (Δ+1)-edge-coloring. Journal of Combinatorial Theory, Series B, 152:319-352, January 2022. URL: https://doi.org/10.1016/j.jctb.2021.10.004.
  6. Sayan Bhattacharya, Martín Costa, Nadav Panski, and Shay Solomon. Arboricity-Dependent Algorithms for Edge Coloring. In Proceedings of the 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024), volume 294 of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1-12:15, Dagstuhl, Germany, 2024. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.SWAT.2024.12.
  7. Andreas Björklund. Determinant sums for undirected Hamiltonicity. SIAM Journal on Computing, 43(1):280-299, 2014. URL: https://doi.org/10.1137/110839229.
  8. Andreas Björklund and Thore Husfeldt. Exact algorithms for exact satisfiability and number of perfect matchings. Algorithmica, 52(2):226-249, December 2007. URL: https://doi.org/10.1007/s00453-007-9149-8.
  9. Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Trimmed moebius inversion and graphs of bounded degree. Theory of Computing Systems, 47(3):637-654, January 2009. URL: https://doi.org/10.1007/s00224-009-9185-7.
  10. Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves for parameterized paths and packings. Journal of Computer and System Sciences, 87:119-139, 2017. URL: https://doi.org/10.1016/j.jcss.2017.03.003.
  11. Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via inclusion-exclusion. SIAM Journal on Computing, 39(2):546-563, 2009. URL: https://doi.org/10.1137/070683933.
  12. M Blank. An estimate of the external stability number of a graph without suspended vertices. Prikl. Mat. i Programmirovanie, 10:3-11, 1973. Google Scholar
  13. Jesper Makholm Byskov. Enumerating maximal independent sets with applications to graph colouring. Operations Research Letters, 32(6):547-556, November 2004. URL: https://doi.org/10.1016/j.orl.2004.03.002.
  14. Aleksander B. G. Christiansen, Eva Rotenberg, and Juliette Vlieghe. Sparsity-Parameterised Dynamic Edge Colouring. In Proceedings of the 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024), volume 294 of Leibniz International Proceedings in Informatics (LIPIcs), pages 20:1-20:18, Dagstuhl, Germany, 2024. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.SWAT.2024.20.
  15. Ran Duan, Haoqing He, and Tianyi Zhang. Dynamic Edge Coloring with Improved Approximation, pages 1937-1945. Society for Industrial and Applied Mathematics, January 2019. URL: https://doi.org/10.1137/1.9781611975482.117.
  16. Eduard Eiben, Tomohiro Koana, and Magnus Wahlström. Determinantal sieving. In David P. Woodruff, editor, Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms (SODA 2024), pages 377-423. SIAM, 2024. URL: https://doi.org/10.1137/1.9781611977912.16.
  17. David Eppstein. Small Maximal Independent Sets and Faster Exact Graph Coloring, pages 462-470. Springer Berlin Heidelberg, 2001. URL: https://doi.org/10.1007/3-540-44634-6_42.
  18. Alexander Golovnev, Alexander S. Kulikov, and Ivan Mihajlin. Families with infants: Speeding up algorithms for NP-hard problems using FFT. ACM Trans. Algorithms, 12(3):35:1-35:17, 2016. URL: https://doi.org/10.1145/2847419.
  19. David G. Harris. Distributed local approximation algorithms for maximum matching in graphs and hypergraphs. In Proceedings of the 60th Annual Symposium on Foundations of Computer Science (FOCS 2019), pages 700-724, 2019. URL: https://doi.org/10.1109/FOCS.2019.00048.
  20. Michael A. Henning. Bounds on domination parameters in graphs: a brief survey. Discuss. Math. Graph Theory, 42(3):665-708, 2022. URL: https://doi.org/10.7151/DMGT.2454.
  21. Ian Holyer. The NP-completeness of edge-coloring. SIAM Journal on Computing, 10(4):718-720, 1981. URL: https://doi.org/10.1137/0210055.
  22. Masao Ishikawa and Masato Wakayama. Minor summation formula of pfaffians. Linear and Multilinear algebra, 39(3):285-305, 1995. Google Scholar
  23. Tomohiro Koana and Magnus Wahlström. Faster algorithms on linear delta-matroids. arXiv preprint arXiv:2402.11596, 2024. URL: https://doi.org/10.48550/arXiv.2402.11596.
  24. Eugene L. Lawler. A note on the complexity of the chromatic number problem. Inf. Process. Lett., 5(3):66-67, 1976. URL: https://doi.org/10.1016/0020-0190(76)90065-X.
  25. Moshe Lewenstein, Seth Pettie, and Virginia Vassilevska Williams. Structure and hardness in P (dagstuhl seminar 16451). Dagstuhl Reports, 6(11):1-34, 2016. URL: https://doi.org/10.4230/DAGREP.6.11.1.
  26. Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, and Saket Saurabh. Deterministic truncation of linear matroids. ACM Transactions on Algorithms, 14(2):14:1-14:20, 2018. URL: https://doi.org/10.1145/3170444.
  27. Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimization problems. Journal of the ACM, 41(5):960-981, September 1994. URL: https://doi.org/10.1145/185675.306789.
  28. Dániel Marx. A parameterized view on matroid optimization problems. Theoretical Computer Science, 410(44):4471-4479, 2009. URL: https://doi.org/10.1016/j.tcs.2009.07.027.
  29. William McCuaig and Bruce Shepherd. Domination in graphs with minimum degree two. Journal of Graph Theory, 13(6):749-762, 1989. URL: https://doi.org/10.1002/JGT.3190130610.
  30. Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press, August 1995. URL: https://doi.org/10.1017/cbo9780511814075.
  31. Kazuo Murota. Matrices and matroids for systems analysis, volume 20. Springer Science & Business Media, 1999. Google Scholar
  32. Oystein Ore. Theory of graphs. In Colloquium Publications. American Mathematical Society, 1962. Google Scholar
  33. Charles Payan. Sur le nombre d'absorption d'un graphe simple, 1975. Google Scholar
  34. Bruce A. Reed. Paths, stars and the number three. Comb. Probab. Comput., 5:277-295, 1996. URL: https://doi.org/10.1017/S0963548300002042.
  35. Magnus Wahlström. Abusing the Tutte matrix: An algebraic instance compression for the K-set-cycle problem. In Proceedings of the 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013), volume 20 of LIPIcs, pages 341-352. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013. URL: https://doi.org/10.4230/LIPICS.STACS.2013.341.
  36. Ryan Williams. Finding paths of length k in O^*(2^k) time. Information Processing Letter, 109(6):315-318, 2009. URL: https://doi.org/10.1016/J.IPL.2008.11.004.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail