Delaunay Triangulations in the Hilbert Metric

Authors Auguste H. Gezalyan , Soo H. Kim, Carlos Lopez, Daniel Skora, Zofia Stefankovic, David M. Mount



PDF
Thumbnail PDF

File

LIPIcs.SWAT.2024.25.pdf
  • Filesize: 1.13 MB
  • 17 pages

Document Identifiers

Author Details

Auguste H. Gezalyan
  • Department of Computer Science, University of Maryland, College Park, MD, USA
Soo H. Kim
  • Wellesley College, MA, USA
Carlos Lopez
  • Montgomery Blair High School, Silver Spring, MD, USA
Daniel Skora
  • Indiana University, Bloomington, IN, USA
Zofia Stefankovic
  • Stony Brook University, Stony Brook, NY, USA
David M. Mount
  • Department of Computer Science, University of Maryland, College Park, MD, USA

Cite AsGet BibTex

Auguste H. Gezalyan, Soo H. Kim, Carlos Lopez, Daniel Skora, Zofia Stefankovic, and David M. Mount. Delaunay Triangulations in the Hilbert Metric. In 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 294, pp. 25:1-25:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SWAT.2024.25

Abstract

The Hilbert metric is a distance function defined for points lying within the interior of a convex body. It arises in the analysis and processing of convex bodies, machine learning, and quantum information theory. In this paper, we show how to adapt the Euclidean Delaunay triangulation to the Hilbert geometry defined by a convex polygon in the plane. We analyze the geometric properties of the Hilbert Delaunay triangulation, which has some notable differences with respect to the Euclidean case, including the fact that the triangulation does not necessarily cover the convex hull of the point set. We also introduce the notion of a Hilbert ball at infinity, which is a Hilbert metric ball centered on the boundary of the convex polygon. We present a simple randomized incremental algorithm that computes the Hilbert Delaunay triangulation for a set of n points in the Hilbert geometry defined by a convex m-gon. The algorithm runs in O(n (log n + log³ m)) expected time. In addition we introduce the notion of the Hilbert hull of a set of points, which we define to be the region covered by their Hilbert Delaunay triangulation. We present an algorithm for computing the Hilbert hull in time O(n h log² m), where h is the number of points on the hull’s boundary.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Delaunay Triangulations
  • Hilbert metric
  • convexity
  • randomized algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Ahmed Abdelkader, Sunil Arya, Guilherme Dias da Fonseca, and David M. Mount. Approximate nearest neighbor searching with non-Euclidean and weighted distances. In Proc. 30th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 355-372, 2019. URL: https://doi.org/10.1137/1.9781611975482.23.
  2. Ahmed Abdelkader and David M. Mount. Economical Delone sets for approximating convex bodies. In Proc. 16th Scand. Workshop Algorithm Theory, pages 4:1-4:12, 2018. URL: https://doi.org/10.4230/LIPIcs.SWAT.2018.4.
  3. Rahul Arya, Sunil Arya, Guilherme Dias da Fonseca, and David M. Mount. Optimal bound on the combinatorial complexity of approximating polytopes. ACM Trans. Algorithms, 18:1-29, 2022. URL: https://doi.org/10.1145/3559106.
  4. Sunil Arya, Guilherme Dias da Fonseca, and David M. Mount. Near-optimal ε-kernel construction and related problems. In Proc. 33rd Internat. Sympos. Comput. Geom., pages 10:1-15, 2017. URL: https://doi.org/10.4230/LIPIcs.SoCG.2017.10.
  5. Sunil Arya, Guilherme Dias da Fonseca, and David M. Mount. On the combinatorial complexity of approximating polytopes. Discrete Comput. Geom., 58(4):849-870, 2017. URL: https://doi.org/10.1007/s00454-016-9856-5.
  6. Sunil Arya, Guilherme Dias da Fonseca, and David M. Mount. Approximate polytope membership queries. SIAM J. Comput., 47(1):1-51, 2018. URL: https://doi.org/10.1137/16M1061096.
  7. Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004. URL: https://doi.org/10.1017/CBO9780511804441.
  8. Madeline Bumpus, Caesar Dai, Auguste H. Gezalyan, Sam Munoz, Renita Santhoshkumar, Songyu Ye, and David M. Mount. Software and analysis for dynamic Voronoi diagrams in the Hilbert metric, 2023. URL: https://arxiv.org/abs/2304.02745.
  9. Yongxin Chen, Tryphon Georgiou, and Michele Pavon. Entropic and displacement interpolation: A computational approach using the Hilbert metric. SIAM J. Appl. Math., 76:2375-2396, 2016. URL: https://doi.org/10.1137/16M1061382.
  10. Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational Geometry: Algorithms and Applications. Springer, 3rd edition, 2010. URL: https://doi.org/10.1007/978-3-540-77974-2.
  11. Friedrich Eisenbrand, Nicolai Hähnle, and Martin Niemeier. Covering cubes and the closest vector problem. In Proc. 27th Annu. Sympos. Comput. Geom., pages 417-423, 2011. URL: https://doi.org/10.1145/1998196.1998264.
  12. Friedrich Eisenbrand and Moritz Venzin. Approximate CVPs in time 2^0.802 n. J. Comput. Sys. Sci., 124:129-139, 2021. URL: https://doi.org/10.1016/j.jcss.2021.09.006.
  13. Auguste H Gezalyan and David M Mount. Voronoi diagrams in the hilbert metric. In 39th International Symposium on Computational Geometry (SoCG 2023). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2023. Google Scholar
  14. Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir. Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica, 7:381-413, 1992. URL: https://doi.org/10.1007/BF01758770.
  15. D. Hilbert. Ueber die gerade Linie als kürzeste Verbindung zweier Punkte. Math. Annalen, 46:91-96, 1895. URL: https://doi.org/10.1007/BF02096204.
  16. Ray A Jarvis. On the identification of the convex hull of a finite set of points in the plane. Information processing letters, 2(1):18-21, 1973. Google Scholar
  17. S. Kullback and R. A. Leibler. On information and sufficiency. Annals. Math. Stat., 22:79-86, 1951. URL: https://doi.org/10.1214/aoms/1177729694.
  18. Bas Lemmens and Roger Nussbaum. Birkhoff’s version of Hilbert’s metric and its applications in analysis, 2013. URL: https://arxiv.org/abs/1304.7921.
  19. Márton Naszódi and Moritz Venzin. Covering convex bodies and the closest vector problem. Discrete Comput. Geom., 67:1191-1210, 2022. URL: https://doi.org/10.1007/s00454-022-00392-x.
  20. Frank Nielsen and Laetitia Shao. On balls in a Hilbert polygonal geometry. In Proc. 33rd Internat. Sympos. Comput. Geom., pages 67:1-67:4, 2017. (Multimedia contribution). URL: https://doi.org/10.4230/LIPIcs.SoCG.2017.67.
  21. Frank Nielsen and Ke Sun. Clustering in Hilbert’s projective geometry: The case studies of the probability simplex and the elliptope of correlation matrices. In Frank Nielsen, editor, Geometric Structures of Information, pages 297-331. Springer Internat. Pub., 2019. URL: https://doi.org/10.1007/978-3-030-02520-5_11.
  22. Frank Nielsen and Ke Sun. Non-linear embeddings in Hilbert simplex geometry, 2022. URL: https://arxiv.org/abs/2203.11434.
  23. Athanase Papadopoulos and Marc Troyanov. Handbook of Hilbert geometry, volume 22 of IRMA Lectures in Mathematics and Theoretical Physics. European Mathematical Society Publishing House, 2014. URL: https://doi.org/10.4171/147.
  24. David Reeb, Michael J. Kastoryano, and Michael M. Wolf. Hilbert’s projective metric in quantum information theory. J. Math. Physics, 52(8), 2011. URL: https://doi.org/10.1063/1.3615729.
  25. Thomas Rothvoss and Moritz Venzin. Approximate CVP in time 2^0.802 n - Now in any norm! In Proc. 23rd Internat. Conf. on Integ. Prog. and Comb. Opt. (IPCO 2022), pages 440-453, 2022. URL: https://doi.org/10.1007/978-3-031-06901-7_33.
  26. Godfried T. Toussaint. The relative neighbourhood graph of a finite planar set. Pattern Recogn., 12:261-268, 1980. URL: https://doi.org/10.1016/0031-3203(80)90066-7.
  27. Constantin Vernicos. On the Hilbert geometry of convex polytopes. In Handbook of Hilbert geometry, volume 22 of IRMA Lectures in Mathematics and Theoretical Physics, pages 111-126. European Mathematical Society Publishing House, 2014. URL: https://doi.org/10.48550/arXiv.1406.0733.
  28. Constantin Vernicos and Cormac Walsh. Flag-approximability of convex bodies and volume growth of Hilbert geometries, 2018. URL: https://arxiv.org/abs/1809.09471.