No-Dimensional Tverberg Partitions Revisited

Authors Sariel Har-Peled , Eliot W. Robson



PDF
Thumbnail PDF

File

LIPIcs.SWAT.2024.26.pdf
  • Filesize: 0.78 MB
  • 14 pages

Document Identifiers

Author Details

Sariel Har-Peled
  • Department of Computer Science, University of Illinois, Urbana, IL, USA
Eliot W. Robson
  • Department of Computer Science, University of Illinois, Urbana, IL, USA

Acknowledgements

The authors thank Ken Clarkson and Sandeep Sen for useful discussions.

Cite AsGet BibTex

Sariel Har-Peled and Eliot W. Robson. No-Dimensional Tverberg Partitions Revisited. In 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 294, pp. 26:1-26:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SWAT.2024.26

Abstract

Given a set P ⊂ ℝ^d of n points, with diameter Δ, and a parameter δ ∈ (0,1), it is known that there is a partition of P into sets P_1, …, P_t, each of size O(1/δ²), such that their convex hulls all intersect a common ball of radius δΔ. We prove that a random partition, with a simple alteration step, yields the desired partition, resulting in a (randomized) linear time algorithm (i.e., O(dn)). We also provide a deterministic algorithm with running time O(dn log n). Previous proofs were either existential (i.e., at least exponential time), or required much bigger sets. In addition, the algorithm and its proof of correctness are significantly simpler than previous work, and the constants are slightly better. We also include a number of applications and extensions using the same central ideas. For example, we provide a linear time algorithm for computing a "fuzzy" centerpoint, and prove a no-dimensional weak ε-net theorem with an improved constant.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Points
  • partitions
  • convex hull
  • high dimension

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Karim A. Adiprasito, Imre Bárány, Nabil H. Mustafa, and Tamás Terpai. Theorems of Carathéodory, Helly, and Tverberg without dimension. Discrete Comput. Geom., 64(2):233-258, 2020. URL: https://doi.org/10.1007/s00454-020-00172-5.
  2. Noga Alon, Imre Bárány, Zoltán Füredi, and Daniel J. Kleitman. Point selections and weak e-nets for convex hulls. Comb. Probab. Comput., 1:189-200, 1992. URL: https://doi.org/10.1017/S0963548300000225.
  3. Imre Bárány and Pablo Soberón. Tverberg’s theorem is 50 years old: a survey. Bull. Amer. Math. Soc. (N.S.), 55(4):459-492, 2018. URL: https://doi.org/10.1090/bull/1634.
  4. Timothy M. Chan, Sariel Har-Peled, and Mitchell Jones. Optimal algorithms for geometric centers and depth. SIAM J. Comput., 51(3):627-663, 2022. URL: https://doi.org/10.1137/21M1423324.
  5. Bernard Chazelle. The Discrepancy Method: Randomness and Complexity. Cambridge University Press, New York, 2001. URL: http://www.cs.princeton.edu/~chazelle/book.html.
  6. Yuansi Chen, Julien Mairal, and Zaid Harchaoui. Fast and robust archetypal analysis for representation learning. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR '14, pages 1478-1485, USA, 2014. IEEE Computer Society. URL: https://doi.org/10.1109/CVPR.2014.192.
  7. Aruni Choudhary and Wolfgang Mulzer. No-dimensional Tverberg theorems and algorithms. Discrete Comput. Geom., 68(4):964-996, 2022. URL: https://doi.org/10.1007/s00454-022-00380-1.
  8. Kenneth L. Clarkson. Coresets, sparse greedy approximation, and the frank-wolfe algorithm. In Shang-Hua Teng, editor, Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, San Francisco, California, USA, January 20-22, 2008, pages 922-931. SIAM, 2008. URL: http://dl.acm.org/citation.cfm?id=1347082.1347183.
  9. Kenneth L. Clarkson, David Eppstein, Gary L. Miller, Carl Sturtivant, and Shang-Hua Teng. Approximating center points with iterative Radon points. Int. J. Comput. Geom. Appl., 6(3):357-377, 1996. URL: https://doi.org/10.1142/S021819599600023X.
  10. Jesús A. De Loera, Xavier Goaoc, Frédéric Meunier, and Nabil H. Mustafa. The discrete yet ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg. Bull. Amer. Math. Soc. (N.S.), 56(3):415-511, 2019. URL: https://doi.org/10.1090/bull/1653.
  11. Sariel Har-Peled and Mitchell Jones. Journey to the center of the point set. ACM Trans. Algorithms, 17(1):9:1-9:21, 2021. URL: https://doi.org/10.1145/3431285.
  12. Sariel Har-Peled and Eliot Wong Robson. No-dimensional Tverberg partitions revisited. CoRR, abs/2306.01678, 2023. URL: https://doi.org/10.48550/arXiv.2306.01678.
  13. Sariel Har-Peled and Timothy Zhou. Improved approximation algorithms for Tverberg partitions. In Petra Mutzel, Rasmus Pagh, and Grzegorz Herman, editors, Proc. 30th Annu. Euro. Sympos. Alg. (ESA), volume 204 of LIPIcs, pages 51:1-51:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ESA.2021.51.
  14. Eduard Helly. Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten. Monatsh. Math. Phys., 37(1):281-302, 1930. URL: https://doi.org/10.1007/BF01696777.
  15. Mary Inaba, Naoki Katoh, and Hiroshi Imai. Applications of weighted Voronoi diagrams and randomization to variance-based k-clustering (extended abstract). In Kurt Mehlhorn, editor, Proc. 10th Annu. Sympos. Comput. Geom. (SoCG), pages 332-339. ACM, 1994. URL: https://doi.org/10.1145/177424.178042.
  16. Shreesh Jadhav and Asish Mukhopadhyay. Computing a centerpoint of a finite planar set of points in linear time. Discrete Comput. Geom., 12:291-312, 1994. URL: https://doi.org/10.1007/BF02574382.
  17. J. Matoušek. Lectures on Discrete Geometry, volume 212 of Grad. Text in Math. Springer, 2002. URL: https://doi.org/10.1007/978-1-4613-0039-7.
  18. Jirí Matoušek. Geometric Discrepancy, volume 18 of Algorithms and Combinatorics. Springer, 1999. URL: https://doi.org/10.1007/978-3-642-03942-3.
  19. Gary L. Miller and Donald R. Sheehy. Approximate centerpoints with proofs. Comput. Geom. Theory Appl., 43(8):647-654, 2010. URL: https://doi.org/10.1016/j.comgeo.2010.04.006.
  20. Helge Tverberg and Sinsia Vreica. On generalizations of Radon’s theorem and the ham sandwich theorem. Eur. J. Comb., 14(3):259-264, 1993. URL: https://doi.org/10.1006/eujc.1993.1029.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail