Succinct Data Structure for Chordal Graphs with Bounded Vertex Leafage

Authors Girish Balakrishnan, Sankardeep Chakraborty, N. S. Narayanaswamy, Kunihiko Sadakane



PDF
Thumbnail PDF

File

LIPIcs.SWAT.2024.4.pdf
  • Filesize: 1.01 MB
  • 16 pages

Document Identifiers

Author Details

Girish Balakrishnan
  • Indian Institute of Technology Madras, Chennai, India
Sankardeep Chakraborty
  • University of Tokyo, Japan
N. S. Narayanaswamy
  • Indian Institute of Technology Madras, Chennai, India
Kunihiko Sadakane
  • University of Tokyo, Japan

Cite AsGet BibTex

Girish Balakrishnan, Sankardeep Chakraborty, N. S. Narayanaswamy, and Kunihiko Sadakane. Succinct Data Structure for Chordal Graphs with Bounded Vertex Leafage. In 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 294, pp. 4:1-4:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SWAT.2024.4

Abstract

Chordal graphs is a well-studied large graph class that is also a strict super-class of path graphs. Munro and Wu (ISAAC 2018) have given an (n²/4+o(n²))-bit succinct representation for n-vertex unlabeled chordal graphs. A chordal graph G = (V,E) is the intersection graph of sub-trees of a tree T. Based on this characterization, the two parameters of chordal graphs which we consider in this work are leafage, introduced by Lin, McKee and West (Discussiones Mathematicae Graph Theory 1998) and vertex leafage, introduced by Chaplick and Stacho (Discret. Appl. Math. 2014). Leafage is the minimum number of leaves in any possible tree T characterizing G. Let L(u) denote the number of leaves of the sub-tree in T corresponding to u ∈ V and k = max_{u ∈ V} L(u). The smallest k for which there exists a tree T for G is called its vertex leafage. In this work, we improve the worst-case information theoretic lower bound of Munro and Wu (ISAAC 2018) for n-vertex unlabeled chordal graphs when vertex leafage is bounded and leafage is unbounded. The class of unlabeled k-vertex leafage chordal graphs that consists of all chordal graphs with vertex leafage at most k and unbounded leafage, denoted 𝒢_k, is introduced for the first time. For k > 0 in o(n^c), c > 0, we obtain a lower bound of ((k-1)n log n -kn log k - O(log n))-bits on the size of any data structure that encodes a graph in 𝒢_k. Further, for every k-vertex leafage chordal graph G and k > 1 in o(n^c), c > 0, we present a ((k-1)n log n + o(kn log n))-bit succinct data structure, constructed using the succinct data structure for path graphs with (k-1)n vertices. Our data structure supports adjacency query in O(k log n) time and using additional 2n log n bits, an O(k² d_v log n + log² n) time neighbourhood query where d_v is degree of v ∈ V.

Subject Classification

ACM Subject Classification
  • Information systems → Data structures
Keywords
  • succinct data structure
  • chordal graphs
  • leafage
  • vertex leafage
  • path graphs

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. H. Acan, S. Chakraborty, S. Jo, K. Nakashima, K. Sadakane, and S.R. Satti. Succinct navigational oracles for families of intersection graphs on a circle. Theor. Comput. Sci., 928(C):151-166, September 2022. URL: https://doi.org/10.1016/j.tcs.2022.06.022.
  2. H. Acan, S. Chakraborty, S. Jo, and S. R. Satti. Succinct encodings for families of interval graphs. Algorithmica, 83(3):776-794, 2021. Google Scholar
  3. G. Balakrishnan, S. Chakraborty, S. Jo, N. S. Narayanaswamy, and K. Sadakane. Succinct data structure for graphs with d-dimensional t-representation, 2023. URL: https://arxiv.org/abs/2311.02427.
  4. G. Balakrishnan, S. Chakraborty, N.S. Narayanaswamy, and K. Sadakane. Succinct data structure for path graphs. Information and Computation, 296:105124, 2024. URL: https://doi.org/10.1016/j.ic.2023.105124.
  5. N. Banerjee, S. Chakraborty, V. Raman, and S. R. Satti. Space efficient linear time algorithms for BFS, DFS and applications. Theory Comput. Syst., 62(8):1736-1762, 2018. URL: https://doi.org/10.1007/S00224-017-9841-2.
  6. S. Chakraborty and S. Jo. Compact representation of interval graphs and circular-arc graphs of bounded degree and chromatic number. Theor. Comput. Sci., 941:156-166, 2023. Google Scholar
  7. S. Chakraborty, S. Jo, and S. R. Satti. Improved space-efficient linear time algorithms for some classical graph problems. CoRR, abs/1712.03349, 2017. URL: https://arxiv.org/abs/1712.03349.
  8. S. Chaplick and J. Stacho. The vertex leafage of chordal graphs. Discrete Applied Mathematics, 168:14-25, 2014. Fifth Workshop on Graph Classes, Optimization, and Width Parameters, Daejeon, Korea, October 2011. URL: https://doi.org/10.1016/j.dam.2012.12.006.
  9. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009. Google Scholar
  10. N. C.Wormald. Counting labelled chordal graphs. Graph. Comb., 1(1):193-200, December 1985. URL: https://doi.org/10.1007/BF02582944.
  11. A. Elmasry, T. Hagerup, and F. Kammer. Space-efficient basic graph algorithms. In Ernst W. Mayr and Nicolas Ollinger, editors, 32nd STACS, volume 30 of LIPIcs, pages 288-301. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. URL: https://doi.org/10.4230/LIPICS.STACS.2015.288.
  12. F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs, 1973. Google Scholar
  13. F. Gavril. A recognition algorithm for the intersection graphs of paths in trees, 1978. Google Scholar
  14. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. North-Holland Publishing Co., NLD, 2004. Google Scholar
  15. A. Golynski, J. I. Munro, and S. S. Rao. Rank/select operations on large alphabets: A tool for text indexing. In SODA, SODA '06, pages 368-373, USA, 2006. Society for Industrial and Applied Mathematics. Google Scholar
  16. A. Itai and M. Rodeh. Representation of graphs. Acta Inf., 17(2):215-219, June 1982. URL: https://doi.org/10.1007/BF00288971.
  17. G. J. Jacobson. Space-efficient static trees and graphs. 30th Annual Symposium on Foundations of Computer Science, pages 549-554, 1989. Google Scholar
  18. I.J. Lin, T.A. McKee, and D.B. West. The leafage of a chordal graph. Discussiones Mathematicae Graph Theory, 18(1):23-48, 1998. URL: http://eudml.org/doc/270535.
  19. L. Markenzon, C F. E. M. Waga, P. R. C Pereira, C. V. P. Friedmann, and A. R. G. Lozano. An efficient representation of chordal graphs. Operations Research Letters, 41(4):331-335, 2013. URL: https://doi.org/10.1016/j.orl.2013.03.008.
  20. C. L. Monma and V. K.-W. Wei. Intersection graphs of paths in a tree. J. Comb. Theory, Ser. B, 41(2):141-181, 1986. Google Scholar
  21. J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Succinct representations of permutations and functions. Theor. Comput. Sci., 438:74-88, 2012. Google Scholar
  22. J. I. Munro and K. Wu. Succinct data structures for chordal graphs. In ISAAC, volume 123 of Leibniz International Proceedings in Informatics (LIPIcs), pages 67:1-67:12, 2018. Google Scholar
  23. G. Navarro. Compact Data Structures - A Practical Approach. Cambridge University Press, 2016. Google Scholar
  24. G. Navarro and K. Sadakane. Fully functional static and dynamic succinct trees. ACM Trans. Algorithms, 10(3), May 2014. URL: https://doi.org/10.1145/2601073.