Discrete Geometry, Algebra, and Combinatorics (Invited Talk)

Author Jacob Fox



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2016.2.pdf
  • Filesize: 197 kB
  • 1 pages

Document Identifiers

Author Details

Jacob Fox

Cite As Get BibTex

Jacob Fox. Discrete Geometry, Algebra, and Combinatorics (Invited Talk). In 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 51, p. 2:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016) https://doi.org/10.4230/LIPIcs.SoCG.2016.2

Abstract

Many problems in discrete and computational geometry can be viewed as finding patterns in graphs or hypergraphs which arise from geometry or algebra. Famous Ramsey, Turán, and Szemerédi-type results prove the existence of certain patterns in graphs and hypergraphs under mild assumptions. We survey recent results which show much stronger/larger patterns for graphs and hypergraphs that arise from geometry or algebra. We further discuss whether the stronger results in these settings are due to geometric, algebraic, combinatorial, or topological properties of the graphs.

Subject Classification

Keywords
  • discrete geometry
  • extremal combinatorics
  • regularity lemmas
  • Ramsey theory

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail