Packing Disks into Disks with Optimal Worst-Case Density

Authors Sándor P. Fekete , Phillip Keldenich , Christian Scheffer



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2019.35.pdf
  • Filesize: 0.99 MB
  • 19 pages

Document Identifiers

Author Details

Sándor P. Fekete
  • Department of Computer Science, TU Braunschweig, Mühlenpfordtstr. 23, 38106 Braunschweig, Germany
Phillip Keldenich
  • Department of Computer Science, TU Braunschweig, Mühlenpfordtstr. 23, 38106 Braunschweig, Germany
Christian Scheffer
  • Department of Computer Science, TU Braunschweig, Mühlenpfordtstr. 23, 38106 Braunschweig, Germany

Acknowledgements

We thank Sebastian Morr for joint previous work.

Cite AsGet BibTex

Sándor P. Fekete, Phillip Keldenich, and Christian Scheffer. Packing Disks into Disks with Optimal Worst-Case Density. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 35:1-35:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.SoCG.2019.35

Abstract

We provide a tight result for a fundamental problem arising from packing disks into a circular container: The critical density of packing disks in a disk is 0.5. This implies that any set of (not necessarily equal) disks of total area delta <= 1/2 can always be packed into a disk of area 1; on the other hand, for any epsilon>0 there are sets of disks of area 1/2+epsilon that cannot be packed. The proof uses a careful manual analysis, complemented by a minor automatic part that is based on interval arithmetic. Beyond the basic mathematical importance, our result is also useful as a blackbox lemma for the analysis of recursive packing algorithms.

Subject Classification

ACM Subject Classification
  • Theory of computation → Packing and covering problems
  • Theory of computation → Computational geometry
Keywords
  • Disk packing
  • packing density
  • tight worst-case bound
  • interval arithmetic
  • approximation

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. I. Castillo, F. J. Kampas, and J. D. Pintér. Solving circle packing problems by global optimization: numerical results and industrial applications. European Journal of Operational Research, 191(3):786-802, 2008. Google Scholar
  2. E. D. Demaine, S.P. Fekete, and R. J. Lang. Circle Packing for Origami Design is Hard. In Origami⁵: 5th International Conference on Origami in Science, Mathematics and Education, AK Peters/CRC Press, pages 609-626, 2011. URL: http://arxiv.org/abs/1105.0791.
  3. S. P. Fekete, P. Keldenich, and C. Scheffer. Packing Disks into Disks with Optimal Worst-Case Density. Computing Research Repository (CoRR), 2019. URL: http://arxiv.org/abs/1903.07908.
  4. S. P. Fekete, S. Morr, and C. Scheffer. Split Packing: Algorithms for Packing Circles with Optimal Worst-Case Density. Discrete & Computational Geometry, 2018. URL: http://dx.doi.org/10.1007/s00454-018-0020-2.
  5. S. P. Fekete and J. Schepers. New Classes of Fast Lower Bounds for Bin Packing Problems. Math. Program., 91(1):11-31, 2001. Google Scholar
  6. S. P. Fekete and J. Schepers. A General Framework for Bounds for Higher-Dimensional Orthogonal Packing Problems. Math. Methods Oper. Res., 60:311-329, 2004. Google Scholar
  7. F. Fodor. The Densest Packing of 19 Congruent Circles in a Circle. Geometriae Dedicata, 74:139–145, 1999. Google Scholar
  8. F. Fodor. The Densest Packing of 12 Congruent Circles in a Circle. Beiträge zur Algebra und Geometrie (Contributions to Algebra and Geometry), 41:401–409, 2000. Google Scholar
  9. F. Fodor. The Densest Packing of 13 Congruent Circles in a Circle. Beiträge zur Algebra und Geometrie (Contributions to Algebra and Geometry), 44:431–440, 2003. Google Scholar
  10. H. J. Fraser and J. A. George. Integrated container loading software for pulp and paper industry. European Journal of Operational Research, 77(3):466-474, 1994. Google Scholar
  11. M. Goldberg. Packing of 14, 16, 17 and 20 circles in a circle. Mathematics Magazine, 44:134–139, 1971. Google Scholar
  12. R.L. Graham, B.D. Lubachevsky, K.J. Nurmela, and P.R.J. Östergøard. Dense Packings of Congruent Circles in a Circle. Discrete Mathematics, 181:139–154, 1998. Google Scholar
  13. M. Hifi and R. M'hallah. A literature review on circle and sphere packing problems: models and methodologies. Advances in Operations Research, 2009. Article ID 150624. Google Scholar
  14. P. Hokama, F. K. Miyazawa, and R. C. S. Schouery. A bounded space algorithm for online circle packing. Information Processing Letters, 116(5):337–342, May 2016. Google Scholar
  15. S. Kravitz. Packing cylinders into cylindrical containers. Mathematics Magazine, 40:65–71, 1967. Google Scholar
  16. R. J. Lang. A computational algorithm for origami design. Proceedings of the Twelfth Annual Symposium on Computational Geometry (SoCG), pages 98-105, 1996. Google Scholar
  17. J. Y. T. Leung, T. W. Tam, C. S. Wong, G. H. Young, and F. Y. L. Chin. Packing squares into a square. Journal of Parallel and Distributed Computing, 10(3):271–275, 1990. Google Scholar
  18. B.D. Lubachevsky and R.L. Graham. Curved Hexagonal Packings of Equal Disks in a Circle. Discrete & Computational Geometry, 18:179–194, 1997. Google Scholar
  19. H. Melissen. Densest Packing of Eleven Congruent Circles in a Circle. Geometriae Dedicata, 50:15–25, 1994. Google Scholar
  20. F. K. Miyazawa, L. L. C. Pedrosa, R. C. S. Schouery, M. Sviridenko, and Y. Wakabayashi. Polynomial-time approximation schemes for circle packing problems. In Proceedings of the 22nd European Symposium on Algorithms (ESA), pages 713-724, 2014. Google Scholar
  21. J. W. Moon and L. Moser. Some packing and covering theorems. In Colloquium Mathematicae, volume 17, pages 103-110. Institute of Mathematics, Polish Academy of Sciences, 1967. Google Scholar
  22. S. Morr. Split Packing: An Algorithm for Packing Circles with Optimal Worst-Case Density. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 99-109, 2017. Google Scholar
  23. N. Oler. A finite packing problem. Canadian Mathematical Bulletin, 4:153–155, 1961. Google Scholar
  24. R. Peikert, D. Würtz, M. Monagan, and C. de Groot. Packing circles in a square: A review and new results. In Proceedings of the 15th IFIP Conference, pages 45-54, 1992. Google Scholar
  25. G.E. Reis. Dense Packing of Equal Circles within a Circle. Mathematics Magazine, issue 48:33–37, 1975. Google Scholar
  26. E. Specht. Packomania, 2015. URL: http://www.packomania.com/.
  27. K. Sugihara, M. Sawai, H. Sano, D.-S. Kim, and D. Kim. Disk packing for the estimation of the size of a wire bundle. Japan Journal of Industrial and Applied Mathematics, 21(3):259-278, 2004. Google Scholar
  28. P. G. Szabó, M. C. Markót, T. Csendes, E. Specht, L. G. Casado, and I. García. New Approaches to Circle Packing in a Square. Springer US, 2007. Google Scholar
  29. H. Wang, W. Huang, Q. Zhangn, and D. Xu. An improved algorithm for the packing of unequal circles within a larger containing circle. European Journal of Operational Research, 141(2):440–453, September 2002. Google Scholar
  30. D. Würtz, M. Monagan., and R. Peikert. The history of packing circles in a square. Maple Technical Newsletter, page 35–42, 1994. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail