Clustering with capacity constraints is a fundamental problem that attracted significant attention throughout the years. In this paper, we give the first FPT constant-factor approximation algorithm for the problem of clustering points in a general metric into k clusters to minimize the sum of cluster radii, subject to non-uniform hard capacity constraints (Capacitated Sum of Radii ). In particular, we give a (15+ε)-approximation algorithm that runs in 2^𝒪(k²log k) ⋅ n³ time. When capacities are uniform, we obtain the following improved approximation bounds. - A (4 + ε)-approximation with running time 2^𝒪(klog(k/ε)) n³, which significantly improves over the FPT 28-approximation of Inamdar and Varadarajan [ESA 2020]. - A (2 + ε)-approximation with running time 2^𝒪(k/ε² ⋅log(k/ε)) dn³ and a (1+ε)-approxim- ation with running time 2^𝒪(kdlog ((k/ε))) n³ in the Euclidean space. Here d is the dimension. - A (1 + ε)-approximation in the Euclidean space with running time 2^𝒪(k/ε² ⋅log(k/ε)) dn³ if we are allowed to violate the capacities by (1 + ε)-factor. We complement this result by showing that there is no (1 + ε)-approximation algorithm running in time f(k)⋅ n^𝒪(1), if any capacity violation is not allowed.
@InProceedings{bandyapadhyay_et_al:LIPIcs.SoCG.2023.12, author = {Bandyapadhyay, Sayan and Lochet, William and Saurabh, Saket}, title = {{FPT Constant-Approximations for Capacitated Clustering to Minimize the Sum of Cluster Radii}}, booktitle = {39th International Symposium on Computational Geometry (SoCG 2023)}, pages = {12:1--12:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-273-0}, ISSN = {1868-8969}, year = {2023}, volume = {258}, editor = {Chambers, Erin W. and Gudmundsson, Joachim}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.12}, URN = {urn:nbn:de:0030-drops-178628}, doi = {10.4230/LIPIcs.SoCG.2023.12}, annote = {Keywords: Clustering, FPT-approximation} }
Feedback for Dagstuhl Publishing