Voronoi Diagrams in the Hilbert Metric

Authors Auguste H. Gezalyan , David M. Mount



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2023.35.pdf
  • Filesize: 1.11 MB
  • 16 pages

Document Identifiers

Author Details

Auguste H. Gezalyan
  • Department of Computer Science, University of Maryland, College Park, MD, USA
David M. Mount
  • Department of Computer Science, University of Maryland, College Park, MD, USA

Cite AsGet BibTex

Auguste H. Gezalyan and David M. Mount. Voronoi Diagrams in the Hilbert Metric. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 35:1-35:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.SoCG.2023.35

Abstract

The Hilbert metric is a distance function defined for points lying within a convex body. It generalizes the Cayley-Klein model of hyperbolic geometry to any convex set, and it has numerous applications in the analysis and processing of convex bodies. In this paper, we study the geometric and combinatorial properties of the Voronoi diagram of a set of point sites under the Hilbert metric. Given any m-sided convex polygon Ω in the plane, we present two randomized incremental algorithms and one deterministic algorithm. The first randomized algorithm and the deterministic algorithm compute the Voronoi diagram of a set of n point sites. The second randomized algorithm extends this to compute the Voronoi diagram of the set of n sites, each of which may be a point or a line segment. Our algorithms all run in expected time O(m n log n). The algorithms use O(m n) storage, which matches the worst-case combinatorial complexity of the Voronoi diagram in the Hilbert metric.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Voronoi diagrams
  • Hilbert metric
  • convexity
  • randomized algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Ahmed Abdelkader, Sunil Arya, Guilherme Dias da Fonseca, and David M. Mount. Approximate nearest neighbor searching with non-Euclidean and weighted distances. In Proc. 30th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 355-372, 2019. URL: https://doi.org/10.1137/1.9781611975482.23.
  2. Ahmed Abdelkader and David M. Mount. Economical Delone sets for approximating convex bodies. In Proc. 16th Scand. Workshop Algorithm Theory, pages 4:1-4:12, 2018. Google Scholar
  3. Rahul Arya, Sunil Arya, Guilherme Dias da Fonseca, and David M. Mount. Optimal bound on the combinatorial complexity of approximating polytopes. ACM Trans. Algorithms, 18:1-29, 2022. URL: https://doi.org/10.1145/3559106.
  4. Sunil Arya, Guilherme Dias da Fonseca, and David M. Mount. Near-optimal ε-kernel construction and related problems. In Proc. 33rd Internat. Sympos. Comput. Geom., pages 10:1-15, 2017. Google Scholar
  5. Sunil Arya, Guilherme Dias da Fonseca, and David M. Mount. On the combinatorial complexity of approximating polytopes. Discrete Comput. Geom., 58(4):849-870, 2017. URL: https://doi.org/10.1007/s00454-016-9856-5.
  6. Sunil Arya, Guilherme Dias da Fonseca, and David M. Mount. Optimal approximate polytope membership. In Proc. 28th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 270-288, 2017. Google Scholar
  7. Herbert Busemann. The Geometry of Geodesics. Academic Press, 1955. Google Scholar
  8. Kenneth L. Clarkson and Peter W. Shor. Applications of random sampling in computational geometry, ii. Discrete Comput. Geom., 4:387-421, 1989. URL: https://doi.org/10.1007/BF02187740.
  9. Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational Geometry: Algorithms and Applications. Springer, 3rd edition, 2010. Google Scholar
  10. Friedrich Eisenbrand, Nicolai Hähnle, and Martin Niemeier. Covering cubes and the closest vector problem. In Proc. 27th Annu. Sympos. Comput. Geom., pages 417-423, 2011. Google Scholar
  11. Friedrich Eisenbrand and Moritz Venzin. Approximate CVPs in time 2^0.802 n. J. Comput. Sys. Sci., 124:129-139, 2021. URL: https://doi.org/10.1016/j.jcss.2021.09.006.
  12. D. Hilbert. Ueber die gerade Linie als kürzeste Verbindung zweier Punkte. Math. Annalen, 46:91-96, 1895. Google Scholar
  13. K. Mehlhorn, St. Meiser, and C. Ó'Dúnlaing. On the construction of abstract Voronoi diagrams. Discrete Comput. Geom., 6:211-224, 1991. URL: https://doi.org/10.1007/BF02574686.
  14. Márton Naszódi and Moritz Venzin. Covering convex bodies and the closest vector problem. Discrete Comput. Geom., 67:1191-1210, 2022. URL: https://doi.org/10.1007/s00454-022-00392-x.
  15. Frank Nielsen and Laetitia Shao. On balls in a Hilbert polygonal geometry (multimedia contribution). In Proc. 33rd Internat. Sympos. Comput. Geom., volume 77 of Leibniz International Proceedings in Informatics (LIPIcs), pages 67:1-67:4. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.SoCG.2017.67.
  16. Frank Nielsen and Ke Sun. Clustering in Hilbert’s projective geometry: The case studies of the probability simplex and the elliptope of correlation matrices. In Frank Nielsen, editor, Geometric Structures of Information, pages 297-331. Springer Internat. Pub., 2019. URL: https://doi.org/10.1007/978-3-030-02520-5_11.
  17. Athanase Papadopoulos and Marc Troyanov. From Funk to Hilbert geometry. In Handbook of Hilbert geometry, volume 22 of IRMA Lectures in Mathematics and Theoretical Physics, pages 33-68. European Mathematical Society Publishing House, 2014. URL: https://doi.org/10.4171/147-1/2.
  18. Athanase Papadopoulos and Marc Troyanov. Handbook of Hilbert geometry, volume 22 of IRMA Lectures in Mathematics and Theoretical Physics. European Mathematical Society Publishing House, 2014. URL: https://doi.org/10.4171/147.
  19. Thomas Rothvoss and Moritz Venzin. Approximate CVP in time 2^0.802 n - Now in any norm! In Proc. 23rd Internat. Conf. on Integ. Prog. and Comb. Opt. (IPCO 2022), pages 440-453, 2022. URL: https://doi.org/10.1007/978-3-031-06901-7_33.
  20. Marc Troyanov. Funk and Hilbert geometries from the Finslerian viewpoint. In Handbook of Hilbert geometry, volume 22 of IRMA Lectures in Mathematics and Theoretical Physics, pages 69-110. European Mathematical Society Publishing House, 2014. URL: https://doi.org/10.4171/147-1/3.
  21. Constantin Vernicos and Cormac Walsh. Flag-approximability of convex bodies and volume growth of Hilbert geometries. HAL Archive (hal-01423693i), 2016. URL: https://hal.archives-ouvertes.fr/hal-01423693.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail