A Universal In-Place Reconfiguration Algorithm for Sliding Cube-Shaped Robots in a Quadratic Number of Moves

Authors Zachary Abel, Hugo A. Akitaya , Scott Duke Kominers, Matias Korman, Frederick Stock



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.1.pdf
  • Filesize: 0.79 MB
  • 14 pages

Document Identifiers

Author Details

Zachary Abel
  • Massachusetts Institute of Technology, Cambridge, MA, USA
Hugo A. Akitaya
  • University of Massachusetts Lowell, MA, USA
Scott Duke Kominers
  • Harvard University, Cambridge, MA, USA
  • a16z crypto, New York, NY, USA
Matias Korman
  • Siemens Electronic Design Automation, Wilsonville, OR, USA
Frederick Stock
  • University of Massachusetts Lowell, MA, USA

Acknowledgements

The authors would like to thank Maarten Löffler and for his contributions during early discussions as well as the authors of [Irina Kostitsyna et al., 2024] and the anonymous reviewers for their valuable comments. Finally, we would like to thank Kevin Li and Colton Wolk for implementing preliminary versions of the algorithms proposed in this paper.

Cite AsGet BibTex

Zachary Abel, Hugo A. Akitaya, Scott Duke Kominers, Matias Korman, and Frederick Stock. A Universal In-Place Reconfiguration Algorithm for Sliding Cube-Shaped Robots in a Quadratic Number of Moves. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 1:1-1:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.1

Abstract

In the modular robot reconfiguration problem, we are given n cube-shaped modules (or robots) as well as two configurations, i.e., placements of the n modules so that their union is face-connected. The goal is to find a sequence of moves that reconfigures the modules from one configuration to the other using "sliding moves," in which a module slides over the face or edge of a neighboring module, maintaining connectivity of the configuration at all times. For many years it has been known that certain module configurations in this model require at least Ω(n²) moves to reconfigure between them. In this paper, we introduce the first universal reconfiguration algorithm - i.e., we show that any n-module configuration can reconfigure itself into any specified n-module configuration using just sliding moves. Our algorithm achieves reconfiguration in O(n²) moves, making it asymptotically tight. We also present a variation that reconfigures in-place, it ensures that throughout the reconfiguration process, all modules, except for one, will be contained in the union of the bounding boxes of the start and end configuration.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • modular reconfigurable robots
  • sliding cube model
  • reconfiguration

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Zachary Abel and Scott D. Kominers. Universal reconfiguration of (hyper-)cubic robots. arXiv preprint, 2008. URL: https://arxiv.org/abs/0802.3414v3.
  2. Hugo A. Akitaya, Esther M. Arkin, Mirela Damian, Erik D. Demaine, Vida Dujmović, Robin Flatland, Matias Korman, Belen Palop, Irene Parada, André van Renssen Renssen, and Vera Sacristán. Universal reconfiguration of facet-connected modular robots by pivots: The O(1) Musketeers. Algorithmica, 83:1316-1351, 2021. URL: https://doi.org/10.1007/s00453-020-00784-6.
  3. Hugo A. Akitaya, Erik D. Demaine, Andrei Gonczi, Dylan H. Hendrickson, Adam Hesterberg, Matias Korman, Oliver Korten, Jayson Lynch, Irene Parada, and Vera Sacristán. Characterizing universal reconfigurability of modular pivoting robots. In Kevin Buchin and Éric Colin de Verdière, editors, Proceedings of the 37th International Symposium on Computational Geometry (SoCG 2021), volume 189 of Leibniz International Proceedings in Informatics (LIPIcs), pages 10:1-10:20, Dagstuhl, Germany, 2021. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.SoCG.2021.10.
  4. Hugo A. Akitaya, Erik D. Demaine, Matias Korman, Irina Kostitsyna, Irene Parada, Willem Sonke, Bettina Speckmann, Ryuhei Uehara, and Jules Wulms. Compacting squares: Input-sensitive in-place reconfiguration of sliding squares. In Artur Czumaj and Qin Xin, editors, Proceedings of the 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022), volume 227 of Leibniz International Proceedings in Informatics (LIPIcs), pages 4:1-4:19, Dagstuhl, Germany, 2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.SWAT.2022.4.
  5. Greg Aloupis, Sébastien Collette, Mirela Damian, Erik D Demaine, Dania El-Khechen, Robin Flatland, Stefan Langerman, Joseph O’Rourke, Val Pinciu, Suneeta Ramaswami, Vera Sacristán, and Stefanie Wuhrer. Realistic reconfiguration of crystalline (and telecube) robots. In Algorithmic Foundation of Robotics VIII: Selected Contributions of the Eight International Workshop on the Algorithmic Foundations of Robotics, pages 433-447. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-00312-7_27.
  6. Greg Aloupis, Sébastien Collette, Mirela Damian, Erik D Demaine, Robin Flatland, Stefan Langerman, Joseph O'Rourke, Suneeta Ramaswami, Vera Sacristán, and Stefanie Wuhrer. Linear reconfiguration of cube-style modular robots. Computational Geometry, 42(6-7):652-663, 2009. URL: https://doi.org/10.1016/j.comgeo.2008.11.003.
  7. Greg Aloupis, Sébastien Collette, Erik D. Demaine, Stefan Langerman, Vera Sacristán, and Stefanie Wuhrer. Reconfiguration of cube-style modular robots using o (log n) parallel moves. In Proceedings of Algorithms and Computation: 19th International Symposium, ISAAC 2008, Gold Coast, Australia, December 15-17, 2008, pages 342-353. Springer, 2008. URL: https://doi.org/10.1007/978-3-540-92182-0_32.
  8. Adrian Dumitrescu and János Pach. Pushing squares around. Graphs and Combinatorics, 22(1):37-50, 2006. URL: https://doi.org/10.1007/s00373-005-0640-1.
  9. Adrian Dumitrescu, Ichiro Suzuki, and Masafumi Yamashita. Motion planning for metamorphic systems: Feasibility, decidability, and distributed reconfiguration. IEEE Transactions on Robotics and Automation, 20(3):409-418, 2004. URL: https://doi.org/10.1109/TRA.2004.824936.
  10. Robert Fitch, Zack Butler, and Daniela Rus. Reconfiguration planning for heterogeneous self-reconfiguring robots. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), volume 3, pages 2460-2467. IEEE, 2003. URL: https://doi.org/10.1109/IROS.2003.1249239.
  11. Irina Kostitsyna, Tim Ophelders, Irene Parada, Tom Peters, Willem Sonke, and Bettina Speckmann. Optimal in-place compaction of sliding cubes. arXiv preprint, 2024. URL: https://arxiv.org/abs/2312.15096.
  12. Tillmann Miltzow, Irene Parada, Willem Sonke, Bettina Speckmann, and Jules Wulms. Hiding sliding cubes: Why reconfiguring modular robots is not easy (media exposition). In Proceedings of the 36th International Symposium on Computational Geometry (SoCG 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.SoCG.2020.78.
  13. Joel Moreno and Vera Sacristán. Reconfiguring sliding squares in-place by flooding. In Proceedings of the 36th European Workshop on Computational Geometry (EuroCG'20), 2020. Art. 32. Google Scholar
  14. Cynthia Sung, James Bern, John Romanishin, and Daniela Rus. Reconfiguration planning for pivoting cube modular robots. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), pages 1933-1940. IEEE, 2015. URL: https://doi.org/10.1109/ICRA.2015.7139451.