Topological k-Metrics

Authors Willow Barkan, Huck Bennett, Amir Nayyeri



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.13.pdf
  • Filesize: 0.79 MB
  • 13 pages

Document Identifiers

Author Details

Willow Barkan
  • Oregon State University, Corvallis, OR, USA
Huck Bennett
  • University of Colorado, Boulder, CO, USA
Amir Nayyeri
  • Oregon State University, Corvallis, OR, USA

Cite AsGet BibTex

Willow Barkan, Huck Bennett, and Amir Nayyeri. Topological k-Metrics. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 13:1-13:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.13

Abstract

Metric spaces (X, d) are ubiquitous objects in mathematics and computer science that allow for capturing pairwise distance relationships d(x, y) between points x, y ∈ X. Because of this, it is natural to ask what useful generalizations there are of metric spaces for capturing "k-wise distance relationships" d(x_1, …, x_k) among points x_1, …, x_k ∈ X for k > 2. To that end, Gähler (Math. Nachr., 1963) (and perhaps others even earlier) defined k-metric spaces, which generalize metric spaces, and most notably generalize the triangle inequality d(x₁, x₂) ≤ d(x₁, y) + d(y, x₂) to the "simplex inequality" d(x_1, …, x_k) ≤ ∑_{i=1}^k d(x_1, …, x_{i-1}, y, x_{i+1}, …, x_k). (The definition holds for any fixed k ≥ 2, and a 2-metric space is just a (standard) metric space.) In this work, we introduce strong k-metric spaces, k-metric spaces that satisfy a topological condition stronger than the simplex inequality, which makes them "behave nicely." We also introduce coboundary k-metrics, which generalize 𝓁_p metrics (and in fact all finite metric spaces induced by norms) and minimum bounding chain k-metrics, which generalize shortest path metrics (and capture all strong k-metrics). Using these definitions, we prove analogs of a number of fundamental results about embedding finite metric spaces including Fréchet embedding (isometric embedding into 𝓁_∞) and isometric embedding of all tree metrics into 𝓁₁. We also study relationships between families of (strong) k-metrics, and show that natural quantities, like simplex volume, are strong k-metrics.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • k-metrics
  • metric embeddings
  • computational topology
  • simplicial complexes

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric embeddings and graph partitioning. J. ACM, 56(2):5:1-5:37, 2009. Preliminary version in STOC 2004. URL: https://doi.org/10.1145/1502793.1502794.
  2. David Avis and Michel Deza. The cut cone, L^1 embeddability, complexity, and multicommodity flows. Networks, 21(6):595-617, 1991. URL: https://doi.org/10.1002/net.3230210602.
  3. Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. In Proceedings of the 37th Annual Symposium on Foundations of Computer Science, FOCS '96, pages 184-, 1996. Google Scholar
  4. Glencora Borradaile, William Maxwell, and Amir Nayyeri. Minimum bounded chains and minimum homologous chains in embedded simplicial complexes. In Proc. 36th Intern. Symp. Comput. Geom., pages 21:1-21:15, 2020. URL: https://doi.org/10.4230/LIPIcs.SoCG.2020.21.
  5. J. Bourgain. On Lipschitz embedding of finite metric spaces in Hilbert space. Israel Journal of Mathematics, 52(1-2):46-52, 1985. URL: https://doi.org/10.1007/BF02776078.
  6. David Bryant and Paul F. Tupper. Hyperconvexity and tight-span theory for diversities. Advances in Mathematics, 231(6):3172-3198, 2012. URL: https://doi.org/10.1016/j.aim.2012.08.008.
  7. David Bryant and Paul F. Tupper. Diversities and the geometry of hypergraphs. Discret. Math. Theor. Comput. Sci., 16(2):1-20, 2014. URL: http://dmtcs.episciences.org/2080, URL: https://doi.org/10.46298/DMTCS.2080.
  8. M.-M. Deza and I.G. Rosenberg. n-semimetrics. European Journal of Combinatorics, 21(6):797-806, 2000. URL: https://doi.org/10.1006/eujc.1999.0384.
  9. Michel Marie Deza and Elena Deza. Encyclopedia of Distances. Springer Berlin Heidelberg, 2009. URL: https://doi.org/10.1007/978-3-642-00234-2_1.
  10. A. Dvoretzky. Some results on convex bodies and Banach spaces. In Proc. Int. Symp. linear Spaces, Jerusalem 1960, pages 123-160, 1961. Google Scholar
  11. Uriel Feige. Approximating the bandwidth via volume respecting embeddings (extended abstract). In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC '98, pages 90-99, New York, NY, USA, 1998. Association for Computing Machinery. URL: https://doi.org/10.1145/276698.276716.
  12. T. Figiel, J. Lindenstrauss, and V. D. Milman. The dimension of almost spherical sections of convex bodies. Acta Mathematica, 139:53-94, 1977. Google Scholar
  13. M. Maurice Frećhet. Sur quelques points du calcul fonctionnel, December 1906. URL: https://doi.org/10.1007/bf03018603.
  14. Anna Gundert. On expansion and spectral properties of simplicial complexes. PhD thesis, ETH Zurich, Zürich, 2013. URL: https://doi.org/10.3929/ethz-a-010060286.
  15. Anna Gundert and May Szedlák. Higher dimensional discrete Cheeger inequalities. J. Comput. Geom., 6(2):54-71, 2015. URL: https://doi.org/10.20382/jocg.v6i2a4.
  16. Anna Gundert and Uli Wagner. On eigenvalues of random complexes. Israel Journal of Mathematics, 216(2):545-582, October 2016. URL: https://doi.org/10.1007/s11856-016-1419-1.
  17. Siegfried Gähler. 2-metrische räume und ihre topologische struktur. Mathematische Nachrichten, 26(1-4):115-148, 1963. Google Scholar
  18. Siegfried Gähler. Lineare 2-normierte räume. Mathematische Nachrichten, 28(1-2):1-43, 1964. Google Scholar
  19. P. Indyk, J. Matoušek, and A. Sidiropoulos. Low-distortion embeddings of finite metric spaces. In Handbook of Discrete and Computational Geometry, pages 211-231, 2017. Google Scholar
  20. W. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. In Conference in modern analysis and probability (New Haven, Conn., 1982), volume 26 of Contemporary Mathematics, pages 189-206. American Mathematical Society, 1984. Google Scholar
  21. Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. ACM, 46(6):787-832, November 1999. URL: https://doi.org/10.1145/331524.331526.
  22. N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorithmic applications. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, SFCS '94, pages 577-591, 1994. Google Scholar
  23. Nathan Linial. Finite metric spaces-combinatorics, geometry and algorithms, 2003. URL: https://arxiv.org/abs/math/0304466.
  24. Nathan Linial, Avner Magen, and Michael E. Saks. Trees and Euclidean metrics. In Jeffrey Scott Vitter, editor, Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 169-175. ACM, 1998. URL: https://doi.org/10.1145/276698.276726.
  25. J. Matoušek. Lecture notes on metric embeddings, 2013. Available at: URL: http://kam.mff.cuni.cz/~matousek/ba-a4.pdf.
  26. Karl Menger. Untersuchungen über allgemeine metrik. Mathematische Annalen, 100:75-163, 1928. URL: http://eudml.org/doc/159284.
  27. Zead Mustafa and Brailey Sims. A new approach to generalized metric spaces. Journal of Nonlinear and Convex Analysis, 2:289-297, 2006. Google Scholar
  28. Ori Parzanchevski, Ron Rosenthal, and Ran J. Tessler. Isoperimetric inequalities in simplicial complexes. Combinatorica, 36(2):195-227, April 2016. Google Scholar
  29. John Steenbergen, Caroline Klivans, and Sayan Mukherjee. A Cheeger-type inequality on simplicial complexes. Advances in Applied Mathematics, 56:56-77, 2014. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail