Document

# On Edge Collapse of Random Simplicial Complexes

## File

LIPIcs.SoCG.2024.21.pdf
• Filesize: 0.86 MB
• 16 pages

## Cite As

Jean-Daniel Boissonnat, Kunal Dutta, Soumik Dutta, and Siddharth Pritam. On Edge Collapse of Random Simplicial Complexes. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 21:1-21:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.21

## Abstract

We consider the edge collapse (introduced in [Boissonnat, Pritam. SoCG 2020]) process on the Erdős-Rényi random clique complex X(n,c/√n) on n vertices with edge probability c/√n such that c > √η₂ where η₂ = inf{η | x = e^{-η(1-x)²} has a solution in (0,1)}. For a given c > √η₂, we show that after t iterations of maximal edge collapsing phases, the remaining subcomplex, or t-core, has at most (1+o(1))binom(n,2)p(1-(c²/3)(1-(1-γ_t)³)) and at least (1+o(1)) binom(n,2) p(1-γ_{t+1}-c²γ_t(1-γ_t)²) edges asymptotically almost surely (a.a.s.), where {γ_t}_{t ≥ 0} is recursively determined by γ_{t+1} = e^{-c²(1-γ_t)²} and γ_0 = 0. We also determine the upper and lower bound on the final core with explicit formulas. If c < √{η₂} then we show that the final core contains o(n√n) edges. On the other hand, if, instead of c being a constant with respect to n, c > √{2log n} then the edge collapse process is no more effective in reducing the size of the complex. Our proof is based on the notion of local weak convergence [Aldous, Steele. In Probability on discrete structures. Springer, 2004] together with two new components. Firstly, we identify the critical combinatorial structures that control the outcome of the edge collapse process. By controlling the expected number of these structures during the edge collapse process we establish a.a.s. bounds on the size of the core. We also give a new concentration inequality for typically Lipschitz functions on random graphs which improves on the bound of [Warnke. Combinatorics, Probability and Computing, 2016] and is, therefore, of independent interest. The proof of our lower bound is via the recursive technique of [Linial and Peled. A Journey Through Discrete Mathematics. 2017] to simulate cycles in infinite trees. These are the first theoretical results proved for edge collapses on random (or non-random) simplicial complexes.

## Subject Classification

##### ACM Subject Classification
• Mathematics of computing
• Theory of computation
• Theory of computation → Randomness, geometry and discrete structures
##### Keywords
• Computational Topology
• Topological Data Analysis
• Strong Collapse
• Simple Collapse
• Persistent homology
• Random simplicial complexes

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. David Aldous and J Michael Steele. The objective method: probabilistic combinatorial optimization and local weak convergence. In Probability on discrete structures, pages 1-72. Springer, 2004.
2. Lior Aronshtam and Nathan Linial. When does the top homology of a random simplicial complex vanish? Random Struct. Algorithms, 46(1):26-35, 2015. URL: https://doi.org/10.1002/rsa.20495.
3. Lior Aronshtam and Nathan Linial. The threshold for d-collapsibility in random complexes. Random Struct. Algorithms, 48(2):260-269, 2016. URL: https://doi.org/10.1002/rsa.20585.
4. Lior Aronshtam, Nathan Linial, Tomasz Luczak, and Roy Meshulam. Collapsibility and vanishing of top homology in random simplicial complexes. Discret. Comput. Geom., 49(2):317-334, 2013. URL: https://doi.org/10.1007/s00454-012-9483-8.
5. Dominique Attali, André Lieutier, and David Salinas. Vietoris-rips complexes also provide topologically correct reconstructions of sampled shapes. Computational Geometry, 46(4):448-465, 2013.
6. J. A. Barmak and E. G. Minian. Strong homotopy types, nerves and collapses. Discrete and Computational Geometry, 47:301-328, 2012.
7. J-D. Boissonnat and S. Pritam. Computing persistent homology of flag complexes via strong collapses. International Symposium on Computational Geometry (SoCG), 2019.
8. J-D. Boissonnat and S. Pritam. Edge collapse and persistence of flag complexes. International Symposium on Computational Geometry (SoCG), 2020.
9. J-D. Boissonnat, S.Pritam, and D. Pareek. Strong Collapse for Persistence. In 26th Annual European Symposium on Algorithms (ESA 2018), volume 112, 2018.
10. Béla Bollobás. Random graphs. Number 73 in Cambridge studies in advanced mathematics. Cambridge University Press, 2 edition, 2001.
11. Marc Glisse and Siddharth Pritam. Swap, Shift and Trim to Edge Collapse a Filtration. In 38th International Symposium on Computational Geometry (SoCG 2022), volume 224, pages 44:1-44:15, 2022.
12. A. Hatcher. Algebraic Topology. Univ. Press Cambridge, 2001.
13. Svante Janson and Malwina J Luczak. A simple solution to the k-core problem. Random Structures & Algorithms, 30(1-2):50-62, 2007.
14. Matthew Kahle. Topology of random clique complexes. Discrete mathematics, 309(6):1658-1671, 2009.
15. Matthew Kahle. Random simplicial complexes, 2016. URL: https://arxiv.org/abs/1607.07069.
16. Shu Kanazawa. Law of large numbers for betti numbers of homogeneous and spatially independent random simplicial complexes. Random Structures & Algorithms, 60(1):68-105, 2022.
17. Jeong Han Kim and Van H Vu. Concentration of multivariate polynomials and its applications. Combinatorica, 20(3):417-434, 2000.
18. Dmitry N. Kozlov. The threshold function for vanishing of the top homology group of random d-complexes. Proceedings of the American Mathematical Society, 138(12):4517-4527, 2010. URL: http://www.jstor.org/stable/41059187.
19. Nathan Linial and Roy Meshulam. Homological connectivity of random 2-complexes. Comb., 26(4):475-487, 2006. URL: https://doi.org/10.1007/s00493-006-0027-9.
20. Nathan Linial and Yuval Peled. Random simplicial complexes: around the phase transition. A Journey Through Discrete Mathematics, pages 543-570, 2017.
21. Greg Malen. Collapsibility of random clique complexes. Discrete Mathematics, 346(3):113267, 2023. URL: https://doi.org/10.1016/j.disc.2022.113267.
22. Roy Meshulam and N. Wallach. Homological connectivity of random k-dimensional complexes. Random Struct. Algorithms, 34(3):408-417, 2009. URL: https://doi.org/10.1002/rsa.20238.
23. Michael Molloy. Cores in random hypergraphs and boolean formulas. Random Structures & Algorithms, 27(1):124-135, 2005.
24. Andrew Newman. One-sided sharp thresholds for homology of random flag complexes. Journal of the London Mathematical Society, 109(3):e12872, 2024.
25. Boris Pittel, Joel Spencer, and Nicholas Wormald. Sudden emergence of a giantk-core in a random graph. Journal of Combinatorial Theory, Series B, 67(1):111-151, 1996.
26. Oliver Riordan. The k-core and branching processes. Combinatorics, Probability and Computing, 17(1):111-136, 2008.
27. Warren Schudy and Maxim Sviridenko. Concentration and moment inequalities for polynomials of independent random variables. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pages 437-446. SIAM, 2012.
28. Lutz Warnke. On the method of typical bounded differences. Combinatorics, Probability and Computing, 25(2):269-299, 2016. URL: https://doi.org/10.1017/S0963548315000103.
29. J. H. C Whitehead. Simplicial spaces nuclei and m-groups. Proc. London Math. Soc, 45:243-327, 1939.
30. Adam C. Wilkerson, Harish Chintakunta, and Hamid Krim. Computing persistent features in big data: A distributed dimension reduction approach. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 11-15, 2014. URL: https://doi.org/10.1109/ICASSP.2014.6853548.
31. Siddharth Pritam Ángel Javier Alonso, Michael Kerber. Filtration-Domination in Bifiltered Graphs. In SIAM Symposium on Algorithm Engineering and Experiments (ALENEX23), 2023.
X

Feedback for Dagstuhl Publishing