Reconfiguration of Plane Trees in Convex Geometric Graphs

Authors Nicolas Bousquet , Lucas de Meyer , Théo Pierron , Alexandra Wesolek



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.22.pdf
  • Filesize: 0.73 MB
  • 17 pages

Document Identifiers

Author Details

Nicolas Bousquet
  • Université de Lyon, LIRIS, CNRS, Université Claude Bernard Lyon 1, France
Lucas de Meyer
  • Université de Lyon, LIRIS, CNRS, Université Claude Bernard Lyon 1, France
Théo Pierron
  • Université de Lyon, LIRIS, CNRS, Université Claude Bernard Lyon 1, France
Alexandra Wesolek
  • Université de Lyon, LIRIS, CNRS, Université Claude Bernard Lyon 1, France

Acknowledgements

The first and third authors would like to thank Valentin Gledel for interesting discussions on the problems on an earlier stage of this project.

Cite AsGet BibTex

Nicolas Bousquet, Lucas de Meyer, Théo Pierron, and Alexandra Wesolek. Reconfiguration of Plane Trees in Convex Geometric Graphs. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 22:1-22:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.22

Abstract

A non-crossing spanning tree of a set of points in the plane is a spanning tree whose edges pairwise do not cross. Avis and Fukuda in 1996 proved that there always exists a flip sequence of length at most 2n-4 between any pair of non-crossing spanning trees (where n denotes the number of points). Hernando et al. proved that the length of a minimal flip sequence can be of length at least (3/2) n. Two recent results of Aichholzer et al. and Bousquet et al. improved the Avis and Fukuda upper bound by proving that there always exists a flip sequence of length respectively at most 2n-log n and 2n-√n when the points are in convex position. We pursue the investigation of the convex case by improving the upper bound by a linear factor for the first time in 30 years. We prove that there always exists a flip sequence between any pair of non-crossing spanning trees T₁,T₂ of length at most c n where c ≈ 1.95. Our result is actually stronger since we prove that, for any two trees T₁,T₂, there exists a flip sequence from T₁ to T₂ of length at most c |T₁ ⧵ T₂|. We also improve the best lower bound in terms of the symmetric difference by proving that there exists a pair of trees T₁,T₂ such that a minimal flip sequence has length (5/3) |T₁ ⧵ T₂|, improving the lower bound of Hernando et al. by considering the symmetric difference instead of the number of vertices. We generalize this lower bound construction to non-crossing flips (where we close the gap between upper and lower bounds) and rotations.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Trees
Keywords
  • Reconfiguration
  • Non-crossing trees
  • flip distance

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Eyal Ackerman, Michelle M Allen, Gill Barequet, Maarten Löffler, Joshua Mermelstein, Diane L Souvaine, and Csaba D Tóth. The flip diameter of rectangulations and convex subdivisions. Discrete Mathematics & Theoretical Computer Science, 18(Combinatorics), 2016. Google Scholar
  2. Oswin Aichholzer, Brad Ballinger, Therese Biedl, Mirela Damian, Erik D Demaine, Matias Korman, Anna Lubiw, Jayson Lynch, Josef Tkadlec, and Yushi Uno. Reconfiguration of non-crossing spanning trees. arXiv preprint, 2022. URL: https://arxiv.org/abs/2206.03879.
  3. Oswin Aichholzer, Sergey Bereg, Adrian Dumitrescu, Alfredo García, Clemens Huemer, Ferran Hurtado, Mikio Kano, Alberto Márquez, David Rappaport, Shakhar Smorodinsky, et al. Compatible geometric matchings. Computational Geometry, 42(6-7):617-626, 2009. Google Scholar
  4. David Avis and Komei Fukuda. Reverse search for enumeration. Discrete Appl. Math., 65(1-3):21-46, 1996. First International Colloquium on Graphs and Optimization (GOI), 1992 (Grimentz). Google Scholar
  5. Nicolas Bousquet, Valentin Gledel, Jonathan Narboni, and Théo Pierron. A note on the flip distance between non-crossing spanning trees. arXiv preprint, 2023. URL: https://arxiv.org/abs/2303.07710.
  6. Nicolas Bousquet, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta, Paul Ouvrard, Akira Suzuki, and Kunihiro Wasa. Reconfiguration of spanning trees with many or few leaves. In 28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), pages 24:1-24:15, 2020. URL: https://doi.org/10.4230/LIPIcs.ESA.2020.24.
  7. Nicolas Bousquet, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta, Paul Ouvrard, Akira Suzuki, and Kunihiro Wasa. Reconfiguration of spanning trees with degree constraints or diameter constraints. Algorithmica, 85(9):2779-2816, 2023. URL: https://doi.org/10.1007/s00453-023-01117-z.
  8. Carmen Hernando, Ferran Hurtado, and Marc Noy. Graphs of non-crossing perfect matchings. Graphs and Combinatorics, 18:517-532, 2002. Google Scholar
  9. M.C. Hernando, F. Hurtado, A. Márquez, M. Mora, and M. Noy. Geometric tree graphs of points in convex position. Discrete Applied Mathematics, 93(1):51-66, 1999. 13th European Workshop on Computational Geometry CG '97. URL: https://doi.org/10.1016/S0166-218X(99)00006-2.
  10. Michael E Houle, Ferran Hurtado, Marc Noy, and Eduardo Rivera-Campo. Graphs of triangulations and perfect matchings. Graphs and Combinatorics, 21:325-331, 2005. Google Scholar
  11. F Hurtado, M Noy, and J Urrutia. Flipping edges in triangulations. Discrete & Computational Geometry, 22(3):333-346, 1999. Google Scholar
  12. Yusuke Kobayashi, Ryoga Mahara, and Tamás Schwarcz. Reconfiguration of the union of arborescences. CoRR, abs/2304.13217, 2023. URL: https://doi.org/10.48550/arXiv.2304.13217.
  13. Anna Lubiw and Vinayak Pathak. Flip distance between two triangulations of a point set is NP-complete. Comput. Geom., 49:17-23, 2015. URL: https://doi.org/10.1016/j.comgeo.2014.11.001.
  14. Torrie L Nichols, Alexander Pilz, Csaba D Tóth, and Ahad N Zehmakan. Transition operations over plane trees. Discrete Mathematics, 343(8), August 2020. Google Scholar
  15. Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018. URL: https://doi.org/10.3390/a11040052.
  16. Alexander Pilz. Flip distance between triangulations of a planar point set is APX-hard. Comput. Geom., 47(5):589-604, 2014. URL: https://doi.org/10.1016/j.comgeo.2014.01.001.
  17. Lionel Pournin. The diameter of associahedra. Advances in Mathematics, 259:13-42, 2014. URL: https://doi.org/10.1016/j.aim.2014.02.035.
  18. Daniel D Sleator, Robert E Tarjan, and William P Thurston. Rotation distance, triangulations, and hyperbolic geometry. Journal of the American Mathematical Society, pages 647-681, 1988. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail