LIPIcs.SoCG.2024.22.pdf
- Filesize: 0.73 MB
- 17 pages
A non-crossing spanning tree of a set of points in the plane is a spanning tree whose edges pairwise do not cross. Avis and Fukuda in 1996 proved that there always exists a flip sequence of length at most 2n-4 between any pair of non-crossing spanning trees (where n denotes the number of points). Hernando et al. proved that the length of a minimal flip sequence can be of length at least (3/2) n. Two recent results of Aichholzer et al. and Bousquet et al. improved the Avis and Fukuda upper bound by proving that there always exists a flip sequence of length respectively at most 2n-log n and 2n-√n when the points are in convex position. We pursue the investigation of the convex case by improving the upper bound by a linear factor for the first time in 30 years. We prove that there always exists a flip sequence between any pair of non-crossing spanning trees T₁,T₂ of length at most c n where c ≈ 1.95. Our result is actually stronger since we prove that, for any two trees T₁,T₂, there exists a flip sequence from T₁ to T₂ of length at most c |T₁ ⧵ T₂|. We also improve the best lower bound in terms of the symmetric difference by proving that there exists a pair of trees T₁,T₂ such that a minimal flip sequence has length (5/3) |T₁ ⧵ T₂|, improving the lower bound of Hernando et al. by considering the symmetric difference instead of the number of vertices. We generalize this lower bound construction to non-crossing flips (where we close the gap between upper and lower bounds) and rotations.
Feedback for Dagstuhl Publishing