A Canonical Tree Decomposition for Chirotopes

Authors Mathilde Bouvel, Valentin Feray, Xavier Goaoc, Florent Koechlin



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.23.pdf
  • Filesize: 0.95 MB
  • 18 pages

Document Identifiers

Author Details

Mathilde Bouvel
  • Université de Lorraine, CNRS, INRIA, LORIA, F-54000 Nancy, France
Valentin Feray
  • Université de Lorraine, CNRS, IECL, F-54000 Nancy, France
Xavier Goaoc
  • Université de Lorraine, CNRS, INRIA, LORIA, F-54000 Nancy, France
Florent Koechlin
  • Université Sorbonne Paris Nord, LIPN, CNRS UMR 7030, F-93340 Villetaneuse, France

Acknowledgements

The authors thank Emo Welzl for discussion leading to footnote 2 and the anonymous referees for helpful comments.

Cite AsGet BibTex

Mathilde Bouvel, Valentin Feray, Xavier Goaoc, and Florent Koechlin. A Canonical Tree Decomposition for Chirotopes. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 23:1-23:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.23

Abstract

We introduce and study a notion of decomposition of planar point sets (or rather of their chirotopes) as trees decorated by smaller chirotopes. This decomposition is based on the concept of mutually avoiding sets, and adapts in some sense the modular decomposition of graphs in the world of chirotopes. The associated tree always exists and is unique up to some appropriate constraints. We also show how to compute the number of triangulations of a chirotope efficiently, starting from its tree and the (weighted) numbers of triangulations of its parts.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Combinatoric problems
  • Theory of computation → Computational geometry
Keywords
  • Order type
  • modular decomposition
  • counting triangulations
  • mutually avoiding point sets
  • generating functions
  • rewriting systems

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Péter Ágoston, Gábor Damásdi, Balázs Keszegh, and Dömötör Pálvölgyi. Orientation of good covers, 2022. URL: https://arxiv.org/abs/2206.01723.
  2. Oswin Aichholzer, Franz Aurenhammer, and Hannes Krasser. Enumerating order types for small point sets with applications. Order, 19(3):265-281, 2002. URL: https://doi.org/10.1023/A:1021231927255.
  3. Michael H. Albert and Mike D. Atkinson. Simple permutations and pattern restricted permutations. Discrete Mathematics, 300(1-3):1-15, 2005. Google Scholar
  4. Michael H. Albert, Mike D. Atkinson, and Martin Klazar. The enumeration of simple permutations. Journal of Integer Sequences, 6, 2003. Google Scholar
  5. Victor Alvarez and Raimund Seidel. A simple aggregative algorithm for counting triangulations of planar point sets and related problems. In Proceedings of the twenty-ninth annual symposium on Computational geometry, pages 1-8, 2013. Google Scholar
  6. Boris Aronov, Paul Erdős, Wayne Goddard, Daniel J. Kleitman, Michael Klugerman, Janos Pach, and Leonard J. Schulman. Crossing families. Combinatorica, 14(2):127-134, 1994. URL: https://doi.org/10.1007/BF01215345.
  7. Martin Balko, Jan Kynčl, Stefan Langerman, and Alexander Pilz. Induced ramsey-type results and binary predicates for point sets. The Electronic Journal in Combinatorics, 24:1-22, 2017. Google Scholar
  8. Cyril Banderier, Philippe Flajolet, Danièle Gardy, Mireille Bousquet-Mélou, Alain Denise, and Dominique Gouyou-Beauchamps. Generating functions for generating trees. Discrete Mathematics, 246(1-3):29-55, 2002. Google Scholar
  9. Frédérique Bassino, Mathilde Bouvel, Valentin Féray, Lucas Gerin, Mickaël Maazoun, and Adeline Pierrot. Random cographs: Brownian graphon limit and asymptotic degree distribution. Random Struct. Algorithms, 60(2):166-200, 2022. URL: https://doi.org/10.1002/rsa.21033.
  10. Frédérique Bassino, Mathilde Bouvel, and Dominique Rossin. Enumeration of pin-permutations. Electronic Journal of Combinatorics, 18, 2011. Google Scholar
  11. Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Gunter M Ziegler. Oriented matroids. Number 46 in Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1999. Google Scholar
  12. Mathilde Bouvel, Valentin Féray, Xavier Goaoc, and Florent Koechlin. A canonical tree decomposition for order types, and some applications, 2024. URL: https://arxiv.org/abs/2403.10311.
  13. Cédric Chauve, Éric Fusy, and Jérémie Lumbroso. An exact enumeration of distance-hereditary graphs. In 2017 Proceedings of the Fourteenth Workshop on Analytic Algorithmics and Combinatorics (ANALCO'17), pages 31-45, 2017. Google Scholar
  14. Tibor Gallai. Transitiv orientierbare Graphen. Acta Mathematica Academiae Scientiarum Hungarica, 18(1-2):25-66, March 1967. Google Scholar
  15. Jacob E. Goodman and Richard Pollack. Multidimensional sorting. SIAM J. Comput., 12(3):484-507, 1983. URL: https://doi.org/10.1137/0212032.
  16. Jacob E. Goodman and Richard Pollack. Allowable sequences and order types in discrete and computational geometry. In New trends in discrete and computational geometry, pages 103-134. Berlin: Springer-Verlag, 1993. Google Scholar
  17. Michel Habib and Christophe Paul. A survey of the algorithmic aspects of modular decomposition. Computer Science Review, 4(1):42-59, February 2010. Google Scholar
  18. Dániel Marx and Tillmann Miltzow. Peeling and Nibbling the Cactus: Subexponential-Time Algorithms for Counting Triangulations and Related Problems. In Sándor Fekete and Anna Lubiw, editors, 32nd International Symposium on Computational Geometry (SoCG 2016), volume 51 of Leibniz International Proceedings in Informatics (LIPIcs), pages 52:1-52:16, Dagstuhl, Germany, 2016. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.SoCG.2016.52.
  19. Rolf H. Möhring and Franz J. Radermacher. Substitution decomposition for discrete structures and connections with combinatorial optimization. Annals of Discrete Math, 19:257-356, 1984. Google Scholar
  20. Daniel Rutschmann and Manuel Wettstein. Chains, Koch chains, and point sets with many triangulations. Journal of the ACM, 70(3):1-26, 2023. Google Scholar
  21. Manfred Scheucher. A SAT attack on Erdős-Szekeres numbers in R^d and the empty hexagon theorem. Computing in Geometry and Topology, 2(1):2:1-2:13, 2023. Google Scholar
  22. Adam Sharir and Micha Sheffer. Counting triangulations of planar point sets. The Electronic Journal on Combinatorics, 18(1):1-70, 2011. Google Scholar
  23. Vikram Sharma and Chee K Yap. Robust geometric computation. In Handbook of Discrete and Computational Geometry, pages 1189-1223. Chapman and Hall/CRC, 2017. Google Scholar
  24. Peter Shor. Stretchability of pseudolines is NP-hard. Applied Geometry and Discrete Mathematics-The Victor Klee Festschrift, 1991. Google Scholar
  25. Andrew Suk and Ji Zeng. A positive fraction Erdős-Szekeres theorem and its applications. Discrete & Computational Geometry, pages 1-18, 2023. Google Scholar
  26. Pavel Valtr. On mutually avoiding sets. In The Mathematics of Paul Erdös II, pages 324-328. Springer, 1997. Google Scholar