Fine-Grained Complexity of Earth Mover’s Distance Under Translation

Authors Karl Bringmann, Frank Staals, Karol Węgrzycki, Geert van Wordragen



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.25.pdf
  • Filesize: 0.87 MB
  • 17 pages

Document Identifiers

Author Details

Karl Bringmann
  • Saarland University and Max-Planck-Institute for Informatics, Saarbrücken, Germany
Frank Staals
  • Department of Information and Computing Sciences, Utrecht University, The Netherlands
Karol Węgrzycki
  • Saarland University and Max Planck Institute for Informatics, Saarbrücken, Germany
Geert van Wordragen
  • Department of Computer Science, Aalto University, Espoo, Finland

Acknowledgements

This work was initiated at the Workshop on New Directions in Geometric Algorithms, May 14-19 2023, Utrecht, The Netherlands.

Cite AsGet BibTex

Karl Bringmann, Frank Staals, Karol Węgrzycki, and Geert van Wordragen. Fine-Grained Complexity of Earth Mover’s Distance Under Translation. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 25:1-25:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.25

Abstract

The Earth Mover’s Distance is a popular similarity measure in several branches of computer science. It measures the minimum total edge length of a perfect matching between two point sets. The Earth Mover’s Distance under Translation (EMDuT) is a translation-invariant version thereof. It minimizes the Earth Mover’s Distance over all translations of one point set. For EMDuT in ℝ¹, we present an 𝒪̃(n²)-time algorithm. We also show that this algorithm is nearly optimal by presenting a matching conditional lower bound based on the Orthogonal Vectors Hypothesis. For EMDuT in ℝ^d, we present an 𝒪̃(n^{2d+2})-time algorithm for the L₁ and L_∞ metric. We show that this dependence on d is asymptotically tight, as an n^o(d)-time algorithm for L_1 or L_∞ would contradict the Exponential Time Hypothesis (ETH). Prior to our work, only approximation algorithms were known for these problems.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Earth Mover’s Distance
  • Earth Mover’s Distance under Translation
  • Fine-Grained Complexity
  • Maximum Weight Bipartite Matching

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Pankaj K. Agarwal, Hsien-Chih Chang, Sharath Raghvendra, and Allen Xiao. Deterministic, near-linear ε-approximation algorithm for geometric bipartite matching. In Stefano Leonardi and Anupam Gupta, editors, STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 1052-1065. ACM, 2022. URL: https://doi.org/10.1145/3519935.3519977.
  2. Pankaj K. Agarwal, Sariel Har-Peled, Micha Sharir, and Yusu Wang. Hausdorff distance under translation for points and balls. ACM Trans. Algorithms, 6(4):71:1-71:26, 2010. URL: https://doi.org/10.1145/1824777.1824791.
  3. Pankaj K. Agarwal, Sharath Raghvendra, Pouyan Shirzadian, and Rachita Sowle. An Improved ε-Approximation Algorithm for Geometric Bipartite Matching. In Artur Czumaj and Qin Xin, editors, 18th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2022, June 27-29, 2022, Tórshavn, Faroe Islands, volume 227 of LIPIcs, pages 6:1-6:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.SWAT.2022.6.
  4. Helmut Alt, Christian Knauer, and Carola Wenk. Matching Polygonal Curves with Respect to the Fréchet Distance. In Afonso Ferreira and Horst Reichel, editors, STACS 2001, 18th Annual Symposium on Theoretical Aspects of Computer Science, Dresden, Germany, February 15-17, 2001, Proceedings, volume 2010 of Lecture Notes in Computer Science, pages 63-74. Springer, 2001. URL: https://doi.org/10.1007/3-540-44693-1_6.
  5. Alexandr Andoni, Khanh Do Ba, Piotr Indyk, and David P. Woodruff. Efficient Sketches for Earth-Mover Distance, with Applications. In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA, pages 324-330. IEEE Computer Society, 2009. URL: https://doi.org/10.1109/FOCS.2009.25.
  6. Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. Earth mover distance over high-dimensional spaces. In Shang-Hua Teng, editor, Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, San Francisco, California, USA, January 20-22, 2008, pages 343-352. SIAM, 2008. URL: http://dl.acm.org/citation.cfm?id=1347082.1347120.
  7. Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Parallel algorithms for geometric graph problems. In David B. Shmoys, editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 574-583. ACM, 2014. URL: https://doi.org/10.1145/2591796.2591805.
  8. Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. A faster algorithm for the discrete Fréchet distance under translation. CoRR, abs/1501.03724, 2015. URL: https://arxiv.org/abs/1501.03724.
  9. Chandrajit L. Bajaj. The algebraic degree of geometric optimization problems. Discret. Comput. Geom., 3:177-191, 1988. URL: https://doi.org/10.1007/BF02187906.
  10. Karl Bringmann, Marvin Künnemann, and André Nusser. When Lipschitz Walks Your Dog: Algorithm Engineering of the Discrete Fréchet Distance Under Translation. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders, editors, 28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 25:1-25:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPICS.ESA.2020.25.
  11. Karl Bringmann, Marvin Künnemann, and André Nusser. Discrete Fréchet Distance under Translation: Conditional Hardness and an Improved Algorithm. ACM Trans. Algorithms, 17(3):25:1-25:42, 2021. URL: https://doi.org/10.1145/3460656.
  12. Karl Bringmann and André Nusser. Translating Hausdorff Is Hard: Fine-Grained Lower Bounds for Hausdorff Distance Under Translation. In Kevin Buchin and Éric Colin de Verdière, editors, 37th International Symposium on Computational Geometry, SoCG 2021, June 7-11, 2021, Buffalo, NY, USA (Virtual Conference), volume 189 of LIPIcs, pages 18:1-18:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.SOCG.2021.18.
  13. Karl Bringmann, Frank Staals, Karol Węgrzycki, and Geert van Wordragen. Fine-grained complexity of earth mover’s distance under translation. CoRR, abs/2403.04356, 2024. URL: https://arxiv.org/abs/2403.04356.
  14. Sergio Cabello, Panos Giannopoulos, Christian Knauer, and Günter Rote. Matching point sets with respect to the Earth Mover’s Distance. Comput. Geom., 39(2):118-133, 2008. URL: https://doi.org/10.1016/J.COMGEO.2006.10.001.
  15. Timothy M. Chan. Minimum L_∞ Hausdorff Distance of Point Sets Under Translation: Generalizing Klee’s Measure Problem. In Erin W. Chambers and Joachim Gudmundsson, editors, 39th International Symposium on Computational Geometry, SoCG 2023, June 12-15, 2023, Dallas, Texas, USA, volume 258 of LIPIcs, pages 24:1-24:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.SOCG.2023.24.
  16. Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower bounds via parameterized complexity. J. Comput. Syst. Sci., 72(8):1346-1367, 2006. URL: https://doi.org/10.1016/J.JCSS.2006.04.007.
  17. Michael B. Cohen, Yin Tat Lee, Gary L. Miller, Jakub Pachocki, and Aaron Sidford. Geometric median in nearly linear time. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 9-21. ACM, 2016. URL: https://doi.org/10.1145/2897518.2897647.
  18. Scott D. Cohen and Leonidas J. Guibas. The Earth Mover’s Distance under Transformation Sets. In Proceedings of the International Conference on Computer Vision, Kerkyra, Corfu, Greece, September 20-25, 1999, pages 1076-1083. IEEE Computer Society, 1999. URL: https://doi.org/10.1109/ICCV.1999.790393.
  19. Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational Geometry: Algorithms and Applications. Springer, Berlin, 3rd edition, 2008. Google Scholar
  20. Herbert Edelsbrunner, Joseph O'Rourke, and Raimund Seidel. Constructing arrangements of lines and hyperplanes with applications. SIAM J. Comput., 15(2):341-363, 1986. URL: https://doi.org/10.1137/0215024.
  21. Jack Edmonds and Richard M Karp. Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM (JACM), 19(2):248-264, 1972. Google Scholar
  22. David Eppstein, Marc J. van Kreveld, Bettina Speckmann, and Frank Staals. Improved grid map layout by point set matching. Int. J. Comput. Geom. Appl., 25(2):101-122, 2015. URL: https://doi.org/10.1142/S0218195915500077.
  23. Omrit Filtser and Matthew J. Katz. Algorithms for the discrete Fréchet distance under translation. J. Comput. Geom., 11(1):156-175, 2020. URL: https://doi.org/10.20382/JOCG.V11I1A7.
  24. Emily Fox and Jiashuai Lu. A deterministic near-linear time approximation scheme for geometric transportation. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 1301-1315. IEEE, 2023. URL: https://doi.org/10.1109/FOCS57990.2023.00078.
  25. Kyle Fox and Jiashuai Lu. A near-linear time approximation scheme for geometric transportation with arbitrary supplies and spread. J. Comput. Geom., 13(1), 2022. URL: https://doi.org/10.20382/JOCG.V13I1A8.
  26. Daniel P. Huttenlocher and Klara Kedem. Computing the Minimum Hausdorff Distance for Point Sets Under Translation. In Raimund Seidel, editor, Proceedings of the Sixth Annual Symposium on Computational Geometry, Berkeley, CA, USA, June 6-8, 1990, pages 340-349. ACM, 1990. URL: https://doi.org/10.1145/98524.98599.
  27. Daniel P. Huttenlocher, William Rucklidge, and Gregory A. Klanderman. Comparing images using the Hausdorff distance under translation. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1992, Proceedings, 15-18 June, 1992, Champaign, Illinois, USA, pages 654-656. IEEE, 1992. URL: https://doi.org/10.1109/CVPR.1992.223209.
  28. Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput. Syst. Sci., 62(2):367-375, 2001. URL: https://doi.org/10.1006/JCSS.2000.1727.
  29. Piotr Indyk. A near linear time constant factor approximation for Euclidean bichromatic matching (cost). In Nikhil Bansal, Kirk Pruhs, and Clifford Stein, editors, Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007, pages 39-42. SIAM, 2007. URL: http://dl.acm.org/citation.cfm?id=1283383.1283388.
  30. Minghui Jiang, Ying Xu, and Binhai Zhu. Protein Structure-structure Alignment with Discrete Fréchet Distance. J. Bioinform. Comput. Biol., 6(1):51-64, 2008. URL: https://doi.org/10.1142/S0219720008003278.
  31. Andrey Boris Khesin, Aleksandar Nikolov, and Dmitry Paramonov. Preconditioning for the geometric transportation problem. J. Comput. Geom., 11(2):234-259, 2020. URL: https://doi.org/10.20382/JOCG.V11I2A11.
  32. Oliver Klein and Remco C. Veltkamp. Approximation algorithms for the Earth mover’s distance under transformations using reference points. In (Informal) Proceedings of the 21st European Workshop on Computational Geometry, Eindhoven, The Netherlands, March 9-11, 2005, pages 53-56. Technische Universiteit Eindhoven, 2005. URL: http://www.win.tue.nl/EWCG2005/Proceedings/14.pdf.
  33. Christian Knauer, Klaus Kriegel, and Fabian Stehn. Minimizing the weighted directed Hausdorff distance between colored point sets under translations and rigid motions. Theor. Comput. Sci., 412(4-5):375-382, 2011. URL: https://doi.org/10.1016/J.TCS.2010.03.020.
  34. Christian Knauer and Marc Scherfenberg. Approximate Nearest Neighbor Search under Translation Invariant Hausdorff Distance. Int. J. Comput. Geom. Appl., 21(3):369-381, 2011. URL: https://doi.org/10.1142/S0218195911003706.
  35. Axel Mosig and Michael Clausen. Approximately matching polygonal curves with respect to the Fréchet distance. Comput. Geom., 30(2):113-127, 2005. URL: https://doi.org/10.1016/J.COMGEO.2004.05.004.
  36. Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in the plane. J. Comput. Syst. Sci., 23(2):166-204, 1981. URL: https://doi.org/10.1016/0022-0000(81)90012-X.
  37. Dhruv Rohatgi. Conditional Hardness of Earth Mover Distance. In Dimitris Achlioptas and László A. Végh, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2019, September 20-22, 2019, Massachusetts Institute of Technology, Cambridge, MA, USA, volume 145 of LIPIcs, pages 12:1-12:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPICS.APPROX-RANDOM.2019.12.
  38. Günter Rote. Computing the Minimum Hausdorff Distance Between Two Point Sets on a Line Under Translation. Inf. Process. Lett., 38(3):123-127, 1991. URL: https://doi.org/10.1016/0020-0190(91)90233-8.
  39. Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. The Earth Mover’s Distance as a Metric for Image Retrieval. Int. J. Comput. Vis., 40(2):99-121, 2000. URL: https://doi.org/10.1023/A:1026543900054.
  40. Pravin M. Vaidya. Geometry helps in matching. SIAM J. Comput., 18(6):1201-1225, 1989. URL: https://doi.org/10.1137/0218080.
  41. Virginia Vassilevska-Williams. On Some Fine-Grained Questions in Algorithms and Complexity. In Proceedings of the International Congress of Mathematicians (ICM 2018), pages 3447-34, 2018. Google Scholar
  42. Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications. Theor. Comput. Sci., 348(2-3):357-365, 2005. URL: https://doi.org/10.1016/j.tcs.2005.09.023.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail