Practical Software for Triangulating and Simplifying 4-Manifolds

Author Rhuaidi Antonio Burke



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.29.pdf
  • Filesize: 2 MB
  • 23 pages

Document Identifiers

Author Details

Rhuaidi Antonio Burke
  • The University of Queensland, Brisbane, Australia

Acknowledgements

We thank the referees for their helpful comments.

Cite AsGet BibTex

Rhuaidi Antonio Burke. Practical Software for Triangulating and Simplifying 4-Manifolds. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 29:1-29:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.29

Abstract

Dimension 4 is the first dimension in which exotic smooth manifold pairs appear - manifolds which are topologically the same but for which there is no smooth deformation of one into the other. Whilst smooth and triangulated 4-manifolds do coincide, comparatively little work has been done towards gaining an understanding of smooth 4-manifolds from the discrete and algorithmic perspective. In this paper we introduce new software tools to make this possible, including a software implementation of an algorithm which enables us to build triangulations of 4-manifolds from Kirby diagrams, as well as a new heuristic for simplifying 4-manifold triangulations. Using these tools, we present new triangulations of several bounded exotic pairs, corks and plugs (objects responsible for "exoticity"), as well as the smallest known triangulation of the fundamental K3 surface. The small size of these triangulations benefit us by revealing fine structural features in 4-manifold triangulations.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Geometric topology
  • Mathematics of computing → Mathematical software
Keywords
  • computational low-dimensional topology
  • triangulations
  • 4-manifolds
  • exotic 4-manifolds
  • mathematical software
  • experiments in low-dimensional topology

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Colin C. Adams. The knot book. W. H. Freeman and Company, New York, 1994. An elementary introduction to the mathematical theory of knots. Google Scholar
  2. S. I. Adyan. Algorithmic unsolvability of problems of recognition of certain properties of groups. Dokl. Akad. Nauk SSSR (N.S.), 103:533-535, 1955. Google Scholar
  3. Selman Akbulut. An exotic 4-manifold. J. Differential Geom., 33(2):357-361, 1991. URL: http://projecteuclid.org/euclid.jdg/1214446321.
  4. Selman Akbulut. A fake compact contractible 4-manifold. J. Differential Geom., 33(2):335-356, 1991. URL: http://projecteuclid.org/euclid.jdg/1214446320.
  5. Selman Akbulut. The Dolgachev surface. Disproving the Harer-Kas-Kirby conjecture. Comment. Math. Helv., 87(1):187-241, 2012. URL: https://doi.org/10.4171/CMH/252.
  6. Selman Akbulut. 4-manifolds, volume 25 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, 2016. URL: https://doi.org/10.1093/acprof:oso/9780198784869.001.0001.
  7. Selman Akbulut and Kouichi Yasui. Corks, plugs and exotic structures. J. Gökova Geom. Topol. GGT, 2:40-82, 2008. Google Scholar
  8. Bruno Benedetti and Frank H. Lutz. Random discrete Morse theory and a new library of triangulations. Exp. Math., 23(1):66-94, 2014. URL: https://doi.org/10.1080/10586458.2013.865281.
  9. Rhuaidi Burke. Katie and USDS: Software for 4-Manifolds. Software, swhId: https://archive.softwareheritage.org/swh:1:dir:9faa995f1aed66b3ba04a18c35027cc1f42ae7b7;origin=https://github.com/raburke/socg24;visit=swh:1:snp:f0bba53516ce96ea0b1f5a37d44cf33d83088ef2;anchor=swh:1:rev:0d184724ef3e036a8f5a1763072c865bd8576cc4, (visited on 21/05/2024). URL: https://github.com/raburke/socg24.
  10. Rhuaidi Antonio Burke. Practical software for triangulating and simplifying 4-manifolds, 2024. URL: https://arxiv.org/abs/2402.15087.
  11. Benjamin A. Burton. Computational topology with Regina: algorithms, heuristics and implementations. In Geometry and topology down under, volume 597 of Contemp. Math., pages 195-224. Amer. Math. Soc., Providence, RI, 2013. URL: https://doi.org/10.1090/conm/597/11877.
  12. Benjamin A. Burton, Ryan Budney, William Pettersson, et al. Regina: Software for low-dimensional topology. http:// regina-normal. github. io/, 1999-2023. Google Scholar
  13. Benjamin A. Burton and Jonathan Spreer. Computationally proving triangulated 4-manifolds to be diffeomorphic, 2014. URL: https://arxiv.org/abs/1403.2780.
  14. Stewart S. Cairns. Triangulation of the manifold of class one. Bull. Amer. Math. Soc., 41(8):549-552, 1935. URL: https://doi.org/10.1090/S0002-9904-1935-06140-3.
  15. Stewart S. Cairns. A simple triangulation method for smooth manifolds. Bull. Amer. Math. Soc., 67:389-390, 1961. URL: https://doi.org/10.1090/S0002-9904-1961-10631-9.
  16. Maria Rita Casali. From framed links to crystallizations of bounded 4-manifolds. J. Knot Theory Ramifications, 9(4):443-458, 2000. URL: https://doi.org/10.1142/S0218216500000220.
  17. Maria Rita Casali and Paola Cristofori. Kirby diagrams and 5-colored graphs representing compact 4-manifolds. Rev. Mat. Complut., 36(3):899-931, 2023. URL: https://doi.org/10.1007/s13163-022-00438-x.
  18. Maria Rita Casali, Paola Cristofori, and Luigi Grasselli. G-degree for singular manifolds. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 112(3):693-704, 2018. URL: https://doi.org/10.1007/s13398-017-0456-x.
  19. Mario Casella and Wolfgang Kühnel. A triangulated K3 surface with the minimum number of vertices. Topology, 40(4):753-772, 2001. URL: https://doi.org/10.1016/S0040-9383(99)00082-8.
  20. Marc Culler, Nathan M. Dunfield, Matthias Goerner, and Jeffrey R. Weeks. SnapPy, a computer program for studying the geometry and topology of 3-manifolds. Available at URL: http://snappy.computop.org.
  21. C. L. Curtis, M. H. Freedman, W. C. Hsiang, and R. Stong. A decomposition theorem for h-cobordant smooth simply-connected compact 4-manifolds. Invent. Math., 123(2):343-348, 1996. URL: https://doi.org/10.1007/s002220050031.
  22. S. K. Donaldson. Irrationality and the h-cobordism conjecture. J. Differential Geom., 26(1):141-168, 1987. URL: http://projecteuclid.org/euclid.jdg/1214441179.
  23. M. Ferri, C. Gagliardi, and L. Grasselli. A graph-theoretical representation of PL-manifolds - a survey on crystallizations. Aequationes Math., 31(2-3):121-141, 1986. URL: https://doi.org/10.1007/BF02188181.
  24. Ronald Fintushel and Ronald J. Stern. Rational blowdowns of smooth 4-manifolds. J. Differential Geom., 46(2):181-235, 1997. URL: http://projecteuclid.org/euclid.jdg/1214459932.
  25. Ronald Fintushel and Ronald J. Stern. Constructions of smooth 4-manifolds. In Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), pages 443-452, 1998. Google Scholar
  26. Robert E. Gompf. Nuclei of elliptic surfaces. Topology, 30(3):479-511, 1991. URL: https://doi.org/10.1016/0040-9383(91)90027-2.
  27. Robert E. Gompf and András I. Stipsicz. 4-manifolds and Kirby calculus, volume 20 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1999. URL: https://doi.org/10.1090/gsm/020.
  28. Morris W. Hirsch and Barry Mazur. Smoothings of piecewise linear manifolds, volume No. 80 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1974. Google Scholar
  29. William Jaco and J. Hyam Rubinstein. 0-efficient triangulations of 3-manifolds. J. Differential Geom., 65(1):61-168, 2003. URL: http://projecteuclid.org/euclid.jdg/1090503053.
  30. M. Kreck. Some closed 4-manifolds with exotic differentiable structure. In Algebraic topology, Aarhus 1982 (Aarhus, 1982), volume 1051 of Lecture Notes in Math., pages 246-262. Springer, Berlin, 1984. URL: https://doi.org/10.1007/BFb0075570.
  31. Greg Kuperberg. Algorithmic homeomorphism of 3-manifolds as a corollary of geometrization. Pacific J. Math., 301(1):189-241, 2019. URL: https://doi.org/10.2140/pjm.2019.301.189.
  32. Marc Lackenby. Algorithms in 3-manifold theory. In Surveys in differential geometry 2020. Surveys in 3-manifold topology and geometry, volume 25 of Surv. Differ. Geom., pages 163-213. Int. Press, Boston, MA, 2022. Google Scholar
  33. François Laudenbach and Valentin Poénaru. A note on 4-dimensional handlebodies. Bull. Soc. Math. France, 100:337-344, 1972. URL: http://www.numdam.org/item?id=BSMF_1972__100__337_0.
  34. A. Markov. The insolubility of the problem of homeomorphy. Dokl. Akad. Nauk SSSR, 121:218-220, 1958. Google Scholar
  35. R. Matveyev. A decomposition of smooth simply-connected h-cobordant 4-manifolds. J. Differential Geom., 44(3):571-582, 1996. URL: http://projecteuclid.org/euclid.jdg/1214459222.
  36. James Munkres. Obstructions to the smoothing of piecewise-differentiable homeomorphisms. Ann. of Math. (2), 72:521-554, 1960. URL: https://doi.org/10.2307/1970228.
  37. Hironobu Naoe. Corks with large shadow-complexity and exotic four-manifolds. Exp. Math., 30(2):157-171, 2021. URL: https://doi.org/10.1080/10586458.2018.1514332.
  38. U. Pachner. Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangulationen kompakter semilinearer Mannigfaltigkeiten. Abh. Math. Sem. Univ. Hamburg, 57:69-86, 1987. URL: https://doi.org/10.1007/BF02941601.
  39. Jongil Park. Non-complex symplectic 4-manifolds with b₂^+ = 1, 2001. URL: https://arxiv.org/abs/math/0108220.
  40. Jongil Park. Simply connected symplectic 4-manifolds with b^+₂ = 1 and c²₁ = 2. Invent. Math., 159(3):657-667, 2005. URL: https://doi.org/10.1007/s00222-004-0404-1.
  41. Michael O. Rabin. Recursive unsolvability of group theoretic problems. Ann. of Math. (2), 67:172-194, 1958. URL: https://doi.org/10.2307/1969933.
  42. Alexandru Scorpan. The wild world of 4-manifolds. American Mathematical Society, Providence, RI, 2005. Google Scholar
  43. Jonathan Spreer and Wolfgang Kühnel. Combinatorial properties of the K3 surface: simplicial blowups and slicings. Exp. Math., 20(2):201-216, 2011. URL: https://doi.org/10.1080/10586458.2011.564546.
  44. J. H. C. Whitehead. On C¹-complexes. Ann. of Math. (2), 41:809-824, 1940. URL: https://doi.org/10.2307/1968861.
  45. Kouichi Yasui. Corks, exotic 4-manifolds and knot concordance, 2017. URL: https://arxiv.org/abs/1505.02551.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail