Effective Computation of the Heegaard Genus of 3-Manifolds

Authors Benjamin A. Burton , Finn Thompson



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.30.pdf
  • Filesize: 0.87 MB
  • 16 pages

Document Identifiers

Author Details

Benjamin A. Burton
  • The University of Queensland, Brisbane, Australia
Finn Thompson
  • The University of Queensland, Brisbane, Australia

Acknowledgements

We thank the referees for their helpful comments.

Cite AsGet BibTex

Benjamin A. Burton and Finn Thompson. Effective Computation of the Heegaard Genus of 3-Manifolds. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 30:1-30:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.30

Abstract

The Heegaard genus is a fundamental invariant of 3-manifolds. However, computing the Heegaard genus of a triangulated 3-manifold is NP-hard, and while algorithms exist, little work has been done in making such an algorithm efficient and practical for implementation. Current algorithms use almost normal surfaces, which are an extension of the algorithm-friendly normal surface theory but which add considerable complexity for both running time and implementation. Here we take a different approach: instead of working with almost normal surfaces, we give a general method of modifying the input triangulation that allows us to avoid almost normal surfaces entirely. The cost is just four new tetrahedra, and the benefit is that important surfaces that were once almost normal can be moved to the simpler setting of normal surfaces in the new triangulation. We apply this technique to the computation of Heegaard genus, where we develop algorithms and heuristics that prove successful in practice when applied to a data set of 3,000 closed hyperbolic 3-manifolds; we precisely determine the genus for at least 2,705 of these.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Topology
Keywords
  • 3-manifolds
  • triangulations
  • normal surfaces
  • computational topology
  • Heegaard genus

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. David Bachman, Ryan Derby-Talbot, and Eric Sedgwick. Computing Heegaard genus is NP-hard. In A journey through discrete mathematics, pages 59-87. Springer, Cham, 2017. Google Scholar
  2. Birch Bryant, William Jaco, and J. Hyam Rubinstein. Efficient triangulations and boundary slopes. Topology Appl., 297:Paper No. 107689, 18, 2021. URL: https://doi.org/10.1016/j.topol.2021.107689.
  3. Benjamin A. Burton. The complexity of the normal surface solution space. In Computational geometry (SCG'10), pages 201-209. ACM, New York, 2010. URL: https://doi.org/10.1145/1810959.1810995.
  4. Benjamin A. Burton. A new approach to crushing 3-manifold triangulations. In Computational geometry (SoCG'13), pages 415-423. ACM, New York, 2013. URL: https://doi.org/10.1145/2462356.2462409.
  5. Benjamin A. Burton. Enumerating fundamental normal surfaces: Algorithms, experiments and invariants. In ALENEX 2014: Proceedings of the Sixteenth Workshop on Algorithm Engineering and Experiments, pages 112-124. SIAM, 2014. Google Scholar
  6. Benjamin A. Burton, Ryan Budney, William Pettersson, et al. Regina: Software for low-dimensional topology. http:// regina-normal. github. io/, 1999-2023. Google Scholar
  7. Benjamin A. Burton and Alexander He. Finding large counterexamples by selectively exploring the Pachner graph. In 39th International Symposium on Computational Geometry, volume 258 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 21, 16. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2023. URL: https://doi.org/10.4230/lipics.socg.2023.21.
  8. Benjamin A. Burton and Finn Thompson. Effective computation of the heegaard genus of 3-manifolds, 2024. URL: https://arxiv.org/abs/2403.11659.
  9. Bradd Clark. The Heegaard genus of manifolds obtained by surgery on links and knots. Internat. J. Math. Math. Sci., 3(3):583-589, 1980. URL: https://doi.org/10.1155/S0161171280000440.
  10. Craig D. Hodgson and Jeffrey R. Weeks. Symmetries, isometries and length spectra of closed hyperbolic three-manifolds. Experiment. Math., 3(4):261-274, 1994. URL: http://projecteuclid.org/euclid.em/1048515809.
  11. William Jaco and J. Hyam Rubinstein. 0-efficient triangulations of 3-manifolds. J. Differential Geom., 65(1):61-168, 2003. URL: http://projecteuclid.org/euclid.jdg/1090503053.
  12. Klaus Johannson. Heegaard surfaces in Haken 3-manifolds. Bull. Amer. Math. Soc. (N.S.), 23(1):91-98, 1990. URL: https://doi.org/10.1090/S0273-0979-1990-15910-5.
  13. Marc Lackenby. An algorithm to determine the Heegaard genus of simple 3-manifolds with nonempty boundary. Algebr. Geom. Topol., 8(2):911-934, 2008. URL: https://doi.org/10.2140/agt.2008.8.911.
  14. Tao Li. An algorithm to determine the Heegaard genus of a 3-manifold. Geom. Topol., 15(2):1029-1106, 2011. URL: https://doi.org/10.2140/gt.2011.15.1029.
  15. Tao Li. Rank and genus of 3-manifolds. J. Amer. Math. Soc., 26(3):777-829, 2013. URL: https://doi.org/10.1090/S0894-0347-2013-00767-5.
  16. Edwin E. Moise. Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung. Ann. of Math. (2), 56:96-114, 1952. URL: https://doi.org/10.2307/1969769.
  17. Kanji Morimoto. On Heegaard splittings of knot exteriors with tunnel number degenerations. Topology Appl., 196:719-728, 2015. URL: https://doi.org/10.1016/j.topol.2015.05.042.
  18. G. D. Mostow. Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms. Inst. Hautes Études Sci. Publ. Math., (34):53-104, 1968. URL: http://www.numdam.org/item?id=PMIHES_1968__34__53_0.
  19. William Pettersson and Benjamin A. Burton. "Normalise" AlmostNormal surfaces, 2017. URL: https://github.com/regina-normal/regina/issues/33.
  20. J. H. Rubinstein. Polyhedral minimal surfaces, Heegaard splittings and decision problems for 3-dimensional manifolds. In Geometric topology (Athens, GA, 1993), volume 2 of AMS/IP Stud. Adv. Math., pages 1-20. Amer. Math. Soc., Providence, RI, 1997. URL: https://doi.org/10.1090/amsip/002.1/01.
  21. Joachim H. Rubinstein. An algorithm to recognize the 3-sphere. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pages 601-611. Birkhäuser, Basel, 1995. Google Scholar
  22. Nikolai Saveliev. Lectures on the topology of 3-manifolds. De Gruyter Textbook. Walter de Gruyter & Co., Berlin, revised edition, 2012. An introduction to the Casson invariant. Google Scholar
  23. Z. Sela. The isomorphism problem for hyperbolic groups. I. Ann. of Math. (2), 141(2):217-283, 1995. URL: https://doi.org/10.2307/2118520.
  24. Abigail Thompson. Thin position and the recognition problem for S³. Math. Res. Lett., 1(5):613-630, 1994. URL: https://doi.org/10.4310/MRL.1994.v1.n5.a9.