GPU Algorithm for Enumerating PL Spheres of Picard Number 4: Application to Toric Topology

Authors Suyoung Choi, Hyeontae Jang, Mathieu Vallée



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.41.pdf
  • Filesize: 0.82 MB
  • 15 pages

Document Identifiers

Author Details

Suyoung Choi
  • Ajou University, Suwon, South Korea
Hyeontae Jang
  • Ajou University, Suwon, South Korea
Mathieu Vallée
  • LIPN, CNRS UMR 7030, Université Sorbonne Paris Nord, Villetaneuse, France

Acknowledgements

The authors are very grateful to Dr. Axel Bacher, who introduced the last-named author to CUDA programming allowing Algorithm 2 to fit with GPU computing terminate in a reasonable time.

Cite AsGet BibTex

Suyoung Choi, Hyeontae Jang, and Mathieu Vallée. GPU Algorithm for Enumerating PL Spheres of Picard Number 4: Application to Toric Topology. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 41:1-41:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.41

Abstract

The fundamental theorem for toric geometry states a toric manifold is encoded by a complete non-singular fan, whose combinatorial structure is the one of a PL sphere together with the set of generators of its rays. The wedge operation on a PL sphere increases its dimension without changing its Picard number. The seeds are the PL spheres that are not wedges. A PL sphere is toric colorable if it comes from a complete rational fan. A result of Choi and Park tells us that the set of toric seeds with a fixed Picard number p is finite. In fact, a toric PL sphere needs its facets to be bases of some binary matroids of corank p with neither coloops, nor cocircuits of size 2. We present and use a GPU-friendly and computationally efficient algorithm to enumerate this set of seeds, up to simplicial isomorphism. Explicitly, it allows us to obtain this set of seeds for Picard number 4 which is of main importance in toric topology for the characterization of toric manifolds with small Picard number. This follows the work of Kleinschmidt (1988) and Batyrev (1991) who fully classified toric manifolds with Picard number ≤ 3.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Enumeration
  • Mathematics of computing → Combinatoric problems
  • Computing methodologies → Shared memory algorithms
  • Computing methodologies → Massively parallel algorithms
  • Theory of computation → Computational geometry
Keywords
  • PL sphere
  • simplicial sphere
  • toric manifold
  • Picard number
  • weak pseudo-manifold
  • characteristic map
  • binary matroid
  • parallel computing
  • GPU programming

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. A. Altshuler, J. Bokowski, and L. Steinberg. The classification of simplicial 3-spheres with nine vertices into polytopes and nonpolytopes. Discrete Math., 31:115-124, 1980. URL: https://doi.org/10.1016/0012-365X(80)90029-1.
  2. A. Altshuler and L. Steinberg. An enumeration of combinatorial 3-manifolds with nine vertices. Discrete Math., 16:91-108, 1976. URL: https://doi.org/10.1016/0012-365X(76)90138-2.
  3. Amos Altshuler and Leon Steinberg. The complete enumeration of the 4-polytopes and 3-spheres with eight vertices. Pac. J. Math., 117:1-16, 1985. URL: https://doi.org/10.2140/pjm.1985.117.1.
  4. Bhaskar Bagchi and Basudeb Datta. Combinatorial triangulations of homology spheres. Discrete Math., 305(1):1-17, 2005. URL: https://doi.org/10.1016/j.disc.2005.06.026.
  5. D. W. Barnette. A simple 4-dimensional nonfacet. Isr. J. Math., 7:16-20, 1969. URL: https://doi.org/10.1007/BF02771742.
  6. R. Bowen and S. Fisk. Generation of triangulations of the sphere. Math. Comput., 21:250-252, 1967. URL: https://doi.org/10.2307/2004172.
  7. Gunnar Brinkmann. Fast generation of planar graphs. MATCH Commun. Math. Comput. Chem., 58(2):323-357, 2007. Google Scholar
  8. Gunnar Brinkmann and Brendan D. McKay. Fast generation of some classes of planar graphs. Electron. Notes Discret. Math., 3:28-31, 1999. URL: https://doi.org/10.1016/S1571-0653(05)80016-2.
  9. J. M. Brückner. Geschichtliche Bemerkungen zur Aufzählung der Vielflache. Pr. (No. 578) Realgymn. Zwickau. 19 S. 4^∘ + 7 S. Taf (1897), 1897. Google Scholar
  10. M. Brückner. Über die Anzahl ψ (n) der allgemeinen Vielflache. Atti Congresso Bologna 4, 5-11 (1931), 1931. Google Scholar
  11. M. M. Brückner. Bemerkungen zur Morphologie der außergewöhnlichen Polyeder, erläutert durch die Sechsflache. Rom. 4. Math.-Kongr. 2, 293-295 (1909), 1909. Google Scholar
  12. Suyoung Choi, Hyeontae Jang, and Mathieu Vallée. The characterization of (n-1)-spheres with n+4 vertices having maximal buchstaber number, 2023. URL: https://arxiv.org/abs/2301.00806.
  13. Suyoung Choi and Hanchul Park. Wedge operations and torus symmetries. Tohoku Math. J. (2), 68(1):91-138, 2016. URL: http://projecteuclid.org/euclid.tmj/1458248864.
  14. Suyoung Choi and Hanchul Park. Wedge Operations and Torus Symmetries II. Canad. J. Math., 69(4):767-789, 2017. URL: https://doi.org/10.4153/CJM-2016-037-4.
  15. N. Yu. Erokhovets. Moment-angle manifolds of simple n-dimensional polytopes with n+3 facets. Uspekhi Mat. Nauk, 66(5(401)):187-188, 2011. URL: https://doi.org/10.1070/RM2011v066n05ABEH004767.
  16. Günter Ewald. Combinatorial convexity and algebraic geometry, volume 168. Springer Science & Business Media, 1996. Google Scholar
  17. Anne Garrison and Richard Scott. Small covers of the dodecahedron and the 120-cell. Proc. Amer. Math. Soc., 131(3):963-971, 2003. URL: https://doi.org/10.1090/S0002-9939-02-06577-2.
  18. Donald W. Grace. Computer search for non-isomorphic convex polyhedra. PhD thesis, Stanford University, USA, 1965. URL: https://searchworks.stanford.edu/view/2043380.
  19. Jörg Gretenkort, Peter Kleinschmidt, and Bernd Sturmfels. On the existence of certain smooth toric varieties. Discrete Comput. Geom., 5(3):255-262, 1990. URL: https://doi.org/10.1007/BF02187789.
  20. Branko Grünbaum. Convex polytopes, volume 221 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 2003. Prepared and with a preface by Volker Kaibel, Victor Klee and Günter M. Ziegler. URL: https://doi.org/10.1007/978-1-4613-0019-9.
  21. Branko Grünbaum and V. P. Sreedharan. An enumeration of simplicial 4-polytopes with 8 vertices. J. Comb. Theory, 2:437-465, 1967. URL: https://doi.org/10.1016/S0021-9800(67)80055-3.
  22. J.F.P. Hudson and J.L. Shaneson. Piecewise Linear Topology. Mathematics lecture note series. W. A. Benjamin, 1969. URL: https://books.google.fr/books?id=UAY_AAAAIAAJ.
  23. Peter Kleinschmidt. A classification of toric varieties with few generators. Aequationes Math., 35(2-3):254-266, 1988. URL: https://doi.org/10.1007/BF01830946.
  24. Frank H. Lutz. Enumeration and random realization of triangulated surfaces. In Discrete differential geometry, pages 235-253. Basel: Birkhäuser, 2008. Google Scholar
  25. P. Mani. Spheres with few vertices. J. Comb. Theory, Ser. A, 13(3):346-352, 1972. URL: https://doi.org/10.1016/0097-3165(72)90068-4.
  26. Talha Bin Masood, Tathagata Ray, and Vijay Natarajan. Parallel computation of alpha complexes for biomolecules. In Sergio Cabello and Danny Z. Chen, editors, 36th International Symposium on Computational Geometry (SoCG 2020), volume 164 of Leibniz International Proceedings in Informatics (LIPIcs), pages 17:1-17:16, Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.SoCG.2020.17.
  27. Hiroyuki Miyata and Arnau Padrol. Enumerating neighborly polytopes and oriented matroids. Exp. Math., 24(4):489-505, 2015. URL: https://doi.org/10.1080/10586458.2015.1015084.
  28. NVIDIA Corporation. NVIDIA CUDA C programming guide, 2023. Version 12.3. URL: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.
  29. Richard P. Stanley. Combinatorics and commutative algebra, volume 41 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, second edition, 1996. Google Scholar
  30. Thom Sulanke and Frank H. Lutz. Isomorphism-free lexicographic enumeration of triangulated surfaces and 3-manifolds. Eur. J. Comb., 30(8):1965-1979, 2009. URL: https://doi.org/10.1016/j.ejc.2008.12.016.
  31. Mathieu Vallée. GPU algorithm for enumerating weak pseudomanifolds. Software, swhId: https://archive.softwareheritage.org/swh:1:dir:ecc6f4940dc55c6a4175e78f2cfa47ccfd3ce009;origin=https://github.com/MVallee1998/GPU_handle;visit=swh:1:snp:07270cf94c6118a0931b7555e77dd33d032ad9f6;anchor=swh:1:rev:720fe13933d5dd7fc88101e2eaa5c05c4ba000e7, (visited on 21/05/2024). URL: https://github.com/MVallee1998/GPU_handle.
  32. Fan Wang, Hubert Wagner, and Chao Chen. Gpu computation of the euler characteristic curve for imaging data. In Xavier Goaoc and Michael Kerber, editors, 38th International Symposium on Computational Geometry (SoCG 2022), volume 224 of Leibniz International Proceedings in Informatics (LIPIcs), pages 64:1-64:16, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.SoCG.2022.64.