Efficient Algorithms for Complexes of Persistence Modules with Applications

Authors Tamal K. Dey , Florian Russold, Shreyas N. Samaga



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.51.pdf
  • Filesize: 0.94 MB
  • 18 pages

Document Identifiers

Author Details

Tamal K. Dey
  • Department of Computer Science, Purdue University, West Lafayette, IN, USA
Florian Russold
  • Institute of Geometry, Graz University of Technology, Austria
Shreyas N. Samaga
  • Department of Computer Science, Purdue University, West Lafayette, IN, USA

Cite AsGet BibTex

Tamal K. Dey, Florian Russold, and Shreyas N. Samaga. Efficient Algorithms for Complexes of Persistence Modules with Applications. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 51:1-51:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.51

Abstract

We extend the persistence algorithm, viewed as an algorithm computing the homology of a complex of free persistence or graded modules, to complexes of modules that are not free. We replace persistence modules by their presentations and develop an efficient algorithm to compute the homology of a complex of presentations. To deal with inputs that are not given in terms of presentations, we give an efficient algorithm to compute a presentation of a morphism of persistence modules. This allows us to compute persistent (co)homology of instances giving rise to complexes of non-free modules. Our methods lead to a new efficient algorithm for computing the persistent homology of simplicial towers and they enable efficient algorithms to compute the persistent homology of cosheaves over simplicial towers and cohomology of persistent sheaves on simplicial complexes. We also show that we can compute the cohomology of persistent sheaves over arbitrary finite posets by reducing the computation to a computation over simplicial complexes.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
  • Mathematics of computing → Algebraic topology
Keywords
  • Persistent (co)homology
  • Persistence modules
  • Sheaves
  • Presentations

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Gorô Azumaya. Corrections and supplementaries to my paper concerning Krull-Remak-Schmidt’s theorem. Nagoya Mathematical Journal, 1:117-124, 1950. Google Scholar
  2. Federico Barbero, Cristian Bodnar, Haitz Sáez de Ocáriz Borde, Michael Bronstein, Petar Veličković, and Pietro Liò. Sheaf neural networks with connection laplacians. In Proceedings of Topological, Algebraic, and Geometric Learning Workshops 2022, volume 196 of Proceedings of Machine Learning Research, pages 28-36. PMLR, 25 February-22 July 2022. Google Scholar
  3. Nicolas Berkouk, Grégory Ginot, and Steve Oudot. Level-sets persistence and sheaf theory. CoRR, abs/1907.09759, 2019. URL: https://arxiv.org/abs/1907.09759.
  4. Cristian Bodnar, Francesco Di Giovanni, Benjamin Chamberlain, Pietro Lió, and Michael Bronstein. Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing in gnns. In Advances in Neural Information Processing Systems, volume 35, pages 18527-18541. Curran Associates, Inc., 2022. Google Scholar
  5. Adam Brown and Ondrej Draganov. Discrete microlocal morse theory, 2022. URL: https://arxiv.org/abs/2209.14993.
  6. Adam Brown and Bei Wang. Sheaf-theoretic stratification learning from geometric and topological perspectives. Discrete and Computational Geometry, 65, 2021. URL: https://doi.org/10.1007/s00454-020-00206-y.
  7. René Corbet and Michael Kerber. The representation theorem of persistence revisited and generalized. Journal of Applied and Computational Topology, 2(1-2):1-31, 2018. URL: https://doi.org/10.1007/s41468-018-0015-3.
  8. Justin Curry. Sheaves, Cosheaves and Applications. PhD thesis, University of Pennsylvania, 2014. URL: https://arxiv.org/abs/1303.3255.
  9. Justin Curry, Robert Ghrist, and Vidit Nanda. Discrete morse theory for computing cellular sheaf cohomology. Foundations of Computational Mathematics, 16, 2013. URL: https://doi.org/10.1007/s10208-015-9266-8.
  10. Justin Curry, Washington Mio, Tom Needham, Osman Berat Okutan, and Florian Russold. Convergence of leray cosheaves for decorated mapper graphs, 2023. URL: https://arxiv.org/abs/2303.00130.
  11. Tamal K. Dey, Fengtao Fan, and Yusu Wang. Computing topological persistence for simplicial maps. In Proc. 13th Annu. Sympos. Comput. Geom. (SoCG), pages 345:345-345:354, 2014. Google Scholar
  12. Tamal K. Dey, Florian Russold, and Shreyas N. Samaga. TDA-Jyamiti/Algos-cplxs-pers-modules. Software, NSF 2301360, swhId: https://archive.softwareheritage.org/swh:1:dir:6c13c2c3aeb94cc68377d695005250d1ab892cb7;origin=https://github.com/TDA-Jyamiti/Algos-cplxs-pers-modules;visit=swh:1:snp:cf1c636b5c687db1f9fd059ec1c433c6c280180b;anchor=swh:1:rev:5040010c80b997ed83eaee51c314ac2a48c9cfeb, (visited on 21/05/2024). URL: https://github.com/TDA-Jyamiti/Algos-cplxs-pers-modules/.
  13. Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and simplification. Discrete & Computational Geometry, 28(4):511-533, November 2002. Google Scholar
  14. Peter Gabriel. Unzerlegbare Darstellungen I. Manuscripta Mathematica, 6(1):71-103, 1972. URL: https://doi.org/10.1007/BF01298413.
  15. Robert Ghrist. Elementary Applied Topology. CreateSpace Independent Publishing Platform, 2014. Google Scholar
  16. Robert Ghrist and Yasuaki Hiraoka. Applications of sheaf cohomology and exact sequences on network codings, 2011. URL: https://www2.math.upenn.edu/~ghrist/preprints/networkcodingshort.pdf.
  17. Jakob Hansen and Thomas Gebhart. Sheaf neural networks, 2020. URL: https://arxiv.org/abs/2012.06333.
  18. Jakob Hansen and Robert Ghrist. Opinion dynamics on discourse sheaves. SIAM Journal on Applied Mathematics, 81:2033-2060, 2021. URL: https://doi.org/10.1137/20M1341088.
  19. Masaki Kashiwara and Pierre Schapira. Persistent homology and microlocal sheaf theory. Journal of Applied and Computational Topology, 2, 2018. URL: https://doi.org/10.1007/s41468-018-0019-z.
  20. Michael Kerber and Hannah Schreiber. Barcodes of towers and a streaming algorithm for persistent homology. In 33rd International Symposium on Computational Geometry, SoCG 2017, volume 77 of LIPIcs, pages 57:1-57:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. Google Scholar
  21. Michael Robinson. Understanding networks and their behaviors using sheaf theory. 2013 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2013 - Proceedings, 2013. URL: https://doi.org/10.1109/GlobalSIP.2013.6737040.
  22. Michael Robinson. Topological Signal Processing. Mathematical Engineering. Springer Berlin Heidelberg, 2014. Google Scholar
  23. Florian Russold. Persistent sheaf cohomology, 2022. URL: https://arxiv.org/abs/2204.13446.
  24. Álvaro Torras-Casas. Distributing persistent homology via spectral sequences. Discrete & Computational Geometry, pages 1-40, 2023. Google Scholar
  25. Xiaoqi Wei, Jiahui Chen, and Guo-Wei Wei. Persistent topological Laplacian analysis of SARS-CoV-2 variants. J Comput Biophys Chem., January 2023. Google Scholar
  26. Xiaoqi Wei and Guo-Wei Wei. Persistent sheaf Laplacians, 2022. URL: https://arxiv.org/abs/2112.10906.
  27. Hee Rhang Yoon and Robert Ghrist. Persistence by parts: Multiscale feature detection via distributed persistent homology, 2020. URL: https://arxiv.org/abs/2001.01623.
  28. Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete and Computational Geometry, 33:249-274, 2005. URL: https://doi.org/10.1007/s00454-004-1146-y.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail