Maximum Betti Numbers of Čech Complexes

Authors Herbert Edelsbrunner , János Pach



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.53.pdf
  • Filesize: 0.73 MB
  • 14 pages

Document Identifiers

Author Details

Herbert Edelsbrunner
  • Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
János Pach
  • Rényi Institute of Mathematics, Budapest, Hungary
  • Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Acknowledgements

The authors thank Matt Kahle for communicating the question about extremal Čech complexes, Ben Schweinhart for early discussions on the linked circles construction in three dimensions, and Gábor Tardos for helpful remarks and suggestions.

Cite AsGet BibTex

Herbert Edelsbrunner and János Pach. Maximum Betti Numbers of Čech Complexes. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 53:1-53:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.53

Abstract

The Upper Bound Theorem for convex polytopes implies that the p-th Betti number of the Čech complex of any set of N points in ℝ^d and any radius satisfies β_p = O(N^m), with m = min{p+1, ⌈d/2⌉}. We construct sets in even and odd dimensions, which prove that this upper bound is asymptotically tight. For example, we describe a set of N = 2(n+1) points in ℝ³ and two radii such that the first Betti number of the Čech complex at one radius is (n+1)² - 1, and the second Betti number of the Čech complex at the other radius is n². In particular, there is an arrangement of n contruent balls in ℝ³ that enclose a quadratic number of voids, which answers a long-standing open question in computational geometry.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Discrete geometry
  • computational topology
  • Čech complexes
  • Delaunay mosaics
  • Alpha complexes
  • Betti numbers
  • extremal questions

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Pankaj K. Agarwal, János Pach, and Micha Sharir. State of the union (of geometric objects). In Surveys on discrete and computational geometry. Twenty years later. AMS-IMS-SIAM summer research conference, Snowbird, UT, USA, June 18-22, 2006, pages 9-48. Providence, RI: American Mathematical Society (AMS), 2008. Google Scholar
  2. Boris Aronov, Otfried Cheong, Michael Gene Dobbins, and Xavier Goaoc. The number of holes in the union of translates of a convex set in three dimensions. Discrete Comput. Geom., 57(1):104-124, 2017. URL: https://doi.org/10.1007/s00454-016-9820-4.
  3. Boris Aronov and Micha Sharir. On translational motion planning of a convex polyhedron in 3-space. SIAM J. Comput., 26(6):1785-1803, 1997. URL: https://doi.org/10.1137/S0097539794266602.
  4. Ulrich Bauer and Herbert Edelsbrunner. The Morse theory of čech and Delaunay complexes. Trans. Am. Math. Soc., 369(5):3741-3762, 2017. URL: https://doi.org/10.1090/tran/6991.
  5. Karol Borsuk. On the imbedding of systems of compacta in simplicial complexes. Fundam. Math., 35:217-234, 1948. URL: https://doi.org/10.4064/fm-35-1-217-234.
  6. Peter Brass, William Moser, and János Pach. Research problems in discrete geometry. New York, NY: Springer, 2005. URL: https://doi.org/10.1007/0-387-29929-7.
  7. Gunnar E. Carlsson. Topology and data. Bulletin of the American Mathematical Society, 46:255-308, 2009. Google Scholar
  8. Boris N. Delaunay. Sur la sphère vide. Bull. Acad. Sci. URSS, 1934(6):793-800, 1934. Google Scholar
  9. Herbert Edelsbrunner and John L. Harer. Computational topology. An introduction. Providence, RI: American Mathematical Society (AMS), 2010. Google Scholar
  10. Herbert Edelsbrunner, David G. Kirkpatrick, and Raimund Seidel. On the shape of a set of points in the plane. IEEE Trans. Inf. Theory, 29:551-559, 1983. URL: https://doi.org/10.1109/TIT.1983.1056714.
  11. Herbert Edelsbrunner and Ernst P. Mücke. Three-dimensional alpha shapes. ACM Trans. Graph., 13(1):43-72, 1994. URL: https://doi.org/10.1145/174462.156635.
  12. Herbert Edelsbrunner and János Pach. Maximum betti numbers of Čech complexes. arXiv, 2023. URL: https://arxiv.org/abs/2310.14801.
  13. Herbert Edelsbrunner and Micha Sharir. A hyperplane incidence problem with applications to counting distances. Applied geometry and discrete mathematics, Festschr. 65th Birthday Victor Klee, DIMACS, Ser. Discret. Math. Theor. Comput. Sci. 4, 253-263 (1991)., 1991. Google Scholar
  14. Pál Erdős. On sets of distances of n points in Euclidean space. Publ. Math. Inst. Hung. Acad. Sci., Ser. A, 5:165-169, 1960. Google Scholar
  15. Robin Forman. Morse theory for cell complexes. Adv. Math., 134(1):90-145, 1998. URL: https://doi.org/10.1006/aima.1997.1650.
  16. Michael Goff. Extremal Betti numbers of Vietoris-Rips complexes. Discrete Comput. Geom., 46(1):132-155, 2011. URL: https://doi.org/10.1007/s00454-010-9274-z.
  17. Allen Hatcher. Algebraic topology. Cambridge: Cambridge University Press, 2002. Google Scholar
  18. Haim Kaplan, Jiří Matoušek, Zuzana Safernova, and Micha Sharir. Unit distances in three dimensions. Comb. Probab. Comput., 21(4):597-610, 2012. URL: https://doi.org/10.1017/S0963548312000144.
  19. Mikhail D. Kovalev. A property of convex sets and its application. Math. Notes, 44(1-2):537-543, 1988. URL: https://doi.org/10.1007/BF01158120.
  20. Peter McMullen. On the upper-bound conjecture for convex polytopes. J. Comb. Theory, Ser. B, 10:187-200, 1971. URL: https://doi.org/10.1016/0095-8956(71)90042-6.
  21. Paul G. Mezey. Molecular surfaces. In Reviews in Computational Chemistry, pages 265-294. John Wiley & Sons, Ltd, 1990. URL: https://doi.org/10.1002/9780470125786.ch7.
  22. Manfred Padberg. Linear optimization and extensions, volume 12 of Algorithms Comb. Berlin: Springer, 2nd ed. edition, 1999. Google Scholar
  23. Jacob T. Schwartz and Micha Sharir. A survey of motion planning and related geometric algorithms. Artif. Intell., 37(1-3):157-169, 1988. URL: https://doi.org/10.1016/0004-3702(88)90053-7.
  24. Dirk Siersma. Voronoi diagrams and Morse theory of the distance function. In Geometry in present day science. Proceedings of the conference, Aarhus, Denmark, January 16-18, 1997, pages 187-208. Singapore: World Scientific, 1999. Google Scholar
  25. Joel Spencer, Endre Szemerédi, and William Trotter. Unit distances in the Euclidean plane. Graph theory and combinatorics, Proc. Conf. Hon. P. Erdős, Cambridge 1983, 293-303 (1984)., 1984. Google Scholar
  26. Georges Voronoï. New applications of continuous parameters in the theory of quadratic forms. II: Investigations of primitive parallelohedra. Part II: Domains of quadratic forms corresponding to different types of primitive parallelohedra. Sect. IV: Different types of primitive parallelohedra. J. Reine Angew. Math., 136:67-178, 1909. URL: https://doi.org/10.1515/crll.1909.136.67.
  27. Joshua Zahl. An improved bound on the number of point-surface incidences in three dimensions. Contrib. Discrete Math., 8(1):100-121, 2013. Google Scholar
  28. Günter M. Ziegler. Lectures on polytopes, volume 152 of Grad. Texts Math. Berlin: Springer-Verlag, 1995. URL: https://doi.org/10.1007/978-1-4613-8431-1.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail