Multicut Problems in Embedded Graphs: The Dependency of Complexity on the Demand Pattern

Authors Jacob Focke , Florian Hörsch, Shaohua Li, Dániel Marx



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.57.pdf
  • Filesize: 0.77 MB
  • 15 pages

Document Identifiers

Author Details

Jacob Focke
  • CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
Florian Hörsch
  • CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
Shaohua Li
  • CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
Dániel Marx
  • CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Cite AsGet BibTex

Jacob Focke, Florian Hörsch, Shaohua Li, and Dániel Marx. Multicut Problems in Embedded Graphs: The Dependency of Complexity on the Demand Pattern. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 57:1-57:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.57

Abstract

The Multicut problem asks for a minimum cut separating certain pairs of vertices: formally, given a graph G and a demand graph H on a set T ⊆ V(G) of terminals, the task is to find a minimum-weight set C of edges of G such that whenever two vertices of T are adjacent in H, they are in different components of G⧵ C. Colin de Verdière [Algorithmica, 2017] showed that Multicut with t terminals on a graph G of genus g can be solved in time f(t,g) n^O(√{g²+gt+t}). Cohen-Addad et al. [JACM, 2021] proved a matching lower bound showing that the exponent of n is essentially best possible (for every fixed value of t and g), even in the special case of Multiway Cut, where the demand graph H is a complete graph. However, this lower bound tells us nothing about other special cases of Multicut such as Group 3-Terminal Cut (where three groups of terminals need to be separated from each other). We show that if the demand pattern is, in some sense, close to being a complete bipartite graph, then Multicut can be solved faster than f(t,g) n^{O(√{g²+gt+t})}, and furthermore this is the only property that allows such an improvement. Formally, for a class ℋ of graphs, Multicut(ℋ) is the special case where the demand graph H is in ℋ. For every fixed class ℋ (satisfying some mild closure property), fixed g, and fixed t, our main result gives tight upper and lower bounds on the exponent of n in algorithms solving Multicut(ℋ). In addition, we investigate a similar setting where, instead of parameterizing by the genus g of G, we parameterize by the minimum number k of edges of G that need to be deleted to obtain a planar graph. Interestingly, in this setting it makes a significant difference whether the graph G is weighted or unweighted: further nontrivial algorithmic techniques give substantial improvements in the unweighted case.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graphs and surfaces
  • Mathematics of computing → Graph algorithms
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • MultiCut
  • Multiway Cut
  • Parameterized Complexity
  • Tight Bounds
  • Embedded Graph
  • Planar Graph
  • Genus
  • Surface
  • Exponential Time Hypothesis

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Pranav Arora, Aritra Banik, Vijay Kumar Paliwal, and Venkatesh Raman. List-coloring - Parameterizing from triviality. Theor. Comput. Sci., 821:102-110, 2020. URL: https://doi.org/10.1016/J.TCS.2020.02.022.
  2. Leizhen Cai. Parameterized complexity of vertex colouring. Discret. Appl. Math., 127(3):415-429, 2003. URL: https://doi.org/10.1016/S0166-218X(02)00242-1.
  3. Rajesh Hemant Chitnis, Andreas Emil Feldmann, Mohammad Taghi Hajiaghayi, and Dániel Marx. Tight bounds for planar strongly connected Steiner subgraph with fixed number of terminals (and extensions). SIAM J. Comput., 49(2):318-364, 2020. URL: https://doi.org/10.1137/18M122371X.
  4. Vincent Cohen-Addad, Éric Colin de Verdière, Dániel Marx, and Arnaud de Mesmay. Almost tight lower bounds for hard cutting problems in embedded graphs. J. ACM, 68(4):30:1-30:26, 2021. URL: https://doi.org/10.1145/3450704.
  5. Éric Colin de Verdière. Multicuts in planar and bounded-genus graphs with bounded number of terminals. Algorithmica, 78:1206-1224, 2017. URL: https://api.semanticscholar.org/CorpusID:686950.
  6. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  7. Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, and Mihalis Yannakakis. The complexity of multiterminal cuts. SIAM J. Comput., 23(4):864-894, 1994. URL: https://doi.org/10.1137/S0097539792225297.
  8. Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM, 19(2):248-264, 1972. URL: https://doi.org/10.1145/321694.321699.
  9. Jacob Focke, Florian Hörsch, Shaohua Li, and Dániel Marx. Multicut problems in embedded graphs: The dependency of complexity on the demand pattern. CoRR, abs/2312.11086, 2023. URL: https://doi.org/10.48550/arXiv.2312.11086.
  10. Fedor V. Fomin and Petr A. Golovach. Subexponential parameterized algorithms and kernelization on almost chordal graphs. Algorithmica, 83(7):2170-2214, 2021. URL: https://doi.org/10.1007/S00453-021-00822-X.
  11. Fedor V. Fomin, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Subexponential parameterized algorithms for planar and apex-minor-free graphs via low treewidth pattern covering. In Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 515-524. IEEE Computer Society, 2016. URL: https://doi.org/10.1109/FOCS.2016.62.
  12. L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of Mathematics, 8:399-404, 1956. URL: https://doi.org/10.4153/CJM-1956-045-5.
  13. Guilherme C. M. Gomes and Vinícius Fernandes dos Santos. On structural parameterizations of the selective coloring problem. In Carlos E. Ferreira, Orlando Lee, and Flávio Keidi Miyazawa, editors, Proceedings of the XI Latin and American Algorithms, Graphs and Optimization Symposium, LAGOS 2021, Online Event / São Paulo, Brazil, May 2021, volume 195 of Procedia Computer Science, pages 77-85. Elsevier, 2021. URL: https://doi.org/10.1016/J.PROCS.2021.11.013.
  14. Jiong Guo, Falk Hüffner, and Rolf Niedermeier. A structural view on parameterizing problems: Distance from triviality. In Rodney G. Downey, Michael R. Fellows, and Frank K. H. A. Dehne, editors, Parameterized and Exact Computation, First International Workshop, IWPEC 2004, Bergen, Norway, September 14-17, 2004, Proceedings, volume 3162 of Lecture Notes in Computer Science, pages 162-173. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-28639-4_15.
  15. Gregory Z. Gutin, Diptapriyo Majumdar, Sebastian Ordyniak, and Magnus Wahlström. Parameterized pre-coloring extension and list coloring problems. SIAM J. Discret. Math., 35(1):575-596, 2021. URL: https://doi.org/10.1137/20M1323369.
  16. T. C. Hu. Multi-commodity network flows. Operations Research, 11(3):344-360, 1963. Google Scholar
  17. Lars Jaffke and Bart M. P. Jansen. Fine-grained parameterized complexity analysis of graph coloring problems. Discret. Appl. Math., 327:33-46, 2023. URL: https://doi.org/10.1016/J.DAM.2022.11.011.
  18. Bart M. P. Jansen and Hans L. Bodlaender. Vertex cover kernelization revisited - upper and lower bounds for a refined parameter. Theory Comput. Syst., 53(2):263-299, 2013. URL: https://doi.org/10.1007/S00224-012-9393-4.
  19. Karthik C. S., Dániel Marx, Marcin Pilipczuk, and Uéverton S. Souza. Conditional lower bounds for sparse parameterized 2-CSP: A streamlined proof. CoRR, abs/2311.05913, 2023. URL: https://doi.org/10.48550/arXiv.2311.05913.
  20. Ken-ichi Kawarabayashi, Bojan Mohar, and Bruce A. Reed. A simpler linear time algorithm for embedding graphs into an arbitrary surface and the genus of graphs of bounded tree-width. In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 771-780. IEEE Computer Society, 2008. URL: https://doi.org/10.1109/FOCS.2008.53.
  21. Philip N. Klein and Dániel Marx. Solving planar k-terminal cut in O(n^c√k) time. In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer, editors, Automata, Languages, and Programming - 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I, volume 7391 of Lecture Notes in Computer Science, pages 569-580. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-31594-7_48.
  22. Philip N. Klein and Dániel Marx. A subexponential parameterized algorithm for subset TSP on planar graphs. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1812-1830. SIAM, 2014. URL: https://doi.org/10.1137/1.9781611973402.131.
  23. Daniel Lokshtanov, Saket Saurabh, and Magnus Wahlström. Subexponential parameterized odd cycle transversal on planar graphs. In Deepak D'Souza, Telikepalli Kavitha, and Jaikumar Radhakrishnan, editors, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2012, December 15-17, 2012, Hyderabad, India, volume 18 of LIPIcs, pages 424-434. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012. URL: https://doi.org/10.4230/LIPIcs.FSTTCS.2012.424.
  24. Federico Mancini. Minimum fill-in and treewidth of split+ke and split+kv graphs. Discret. Appl. Math., 158(7):747-754, 2010. URL: https://doi.org/10.1016/J.DAM.2008.11.006.
  25. Dániel Marx. Parameterized coloring problems on chordal graphs. Theor. Comput. Sci., 351(3):407-424, 2006. URL: https://doi.org/10.1016/J.TCS.2005.10.008.
  26. Dániel Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394-406, 2006. URL: https://doi.org/10.1016/J.TCS.2005.10.007.
  27. Dániel Marx. Can you beat treewidth? Theory Comput., 6(1):85-112, 2010. URL: https://doi.org/10.4086/TOC.2010.V006A005.
  28. Dániel Marx. A tight lower bound for planar multiway cut with fixed number of terminals. In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer, editors, Automata, Languages, and Programming - 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I, volume 7391 of Lecture Notes in Computer Science, pages 677-688. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-31594-7_57.
  29. Dániel Marx, Marcin Pilipczuk, and Michal Pilipczuk. On subexponential parameterized algorithms for Steiner tree and directed subset TSP on planar graphs. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 474-484. IEEE Computer Society, 2018. URL: https://doi.org/10.1109/FOCS.2018.00052.
  30. Dániel Marx and Michal Pilipczuk. Optimal parameterized algorithms for planar facility location problems using Voronoi diagrams. ACM Trans. Algorithms, 18(2):13:1-13:64, 2022. URL: https://doi.org/10.1145/3483425.
  31. Bojan Mohar. A linear time algorithm for embedding graphs in an arbitrary surface. SIAM J. Discret. Math., 12(1):6-26, 1999. URL: https://doi.org/10.1137/S089548019529248X.
  32. Jesper Nederlof. Detecting and counting small patterns in planar graphs in subexponential parameterized time. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1293-1306. ACM, 2020. URL: https://doi.org/10.1145/3357713.3384261.
  33. Paul D. Seymour. A short proof of the two-commodity flow theorem. J. Comb. Theory, Ser. B, 26(3):370-371, 1979. URL: https://doi.org/10.1016/0095-8956(79)90012-1.
  34. Yasuhiko Takenaga and Kenichi Higashide. Vertex coloring of comparability+ke and -ke graphs. In Fedor V. Fomin, editor, Graph-Theoretic Concepts in Computer Science, 32nd International Workshop, WG 2006, Bergen, Norway, June 22-24, 2006, Revised Papers, volume 4271 of Lecture Notes in Computer Science, pages 102-112. Springer, 2006. URL: https://doi.org/10.1007/11917496_10.
  35. Jan van den Brand, Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, Sushant Sachdeva, and Aaron Sidford. A deterministic almost-linear time algorithm for minimum-cost flow. CoRR, abs/2309.16629, 2023. URL: https://doi.org/10.48550/arXiv.2309.16629.
  36. Jan van den Brand, Yu Gao, Arun Jambulapati, Yin Tat Lee, Yang P. Liu, Richard Peng, and Aaron Sidford. Faster maxflow via improved dynamic spectral vertex sparsifiers. In Stefano Leonardi and Anupam Gupta, editors, STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20-24, 2022, pages 543-556. ACM, 2022. URL: https://doi.org/10.1145/3519935.3520068.