The Johnson-Lindenstrauss (JL) Lemma introduced the concept of dimension reduction via a random linear map, which has become a fundamental technique in many computational settings. For a set of n points in ℝ^d and any fixed ε > 0, it reduces the dimension d to O(log n) while preserving, with high probability, all the pairwise Euclidean distances within factor 1+ε. Perhaps surprisingly, the target dimension can be lower if one only wishes to preserve the optimal value of a certain problem on the pointset, e.g., Euclidean max-cut or k-means. However, for some notorious problems, like diameter (aka furthest pair), dimension reduction via the JL map to below O(log n) does not preserve the optimal value within factor 1+ε. We propose to focus on another regime, of moderate dimension reduction, where a problem’s value is preserved within factor α > 1 using target dimension (log n)/poly(α). We establish the viability of this approach and show that the famous k-center problem is α-approximated when reducing to dimension O({log n}/α² + log k). Along the way, we address the diameter problem via the special case k = 1. Our result extends to several important variants of k-center (with outliers, capacities, or fairness constraints), and the bound improves further with the input’s doubling dimension. While our poly(α)-factor improvement in the dimension may seem small, it actually has significant implications for streaming algorithms, and easily yields an algorithm for k-center in dynamic geometric streams, that achieves O(α)-approximation using space poly(kdn^{1/α²}). This is the first algorithm to beat O(n) space in high dimension d, as all previous algorithms require space at least exp(d). Furthermore, it extends to the k-center variants mentioned above.
@InProceedings{jiang_et_al:LIPIcs.SoCG.2024.64, author = {Jiang, Shaofeng H.-C. and Krauthgamer, Robert and Sapir, Shay}, title = {{Moderate Dimension Reduction for k-Center Clustering}}, booktitle = {40th International Symposium on Computational Geometry (SoCG 2024)}, pages = {64:1--64:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-316-4}, ISSN = {1868-8969}, year = {2024}, volume = {293}, editor = {Mulzer, Wolfgang and Phillips, Jeff M.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.64}, URN = {urn:nbn:de:0030-drops-200095}, doi = {10.4230/LIPIcs.SoCG.2024.64}, annote = {Keywords: Johnson-Lindenstrauss transform, dimension reduction, clustering, streaming algorithms} }
Feedback for Dagstuhl Publishing