Demystifying Latschev’s Theorem: Manifold Reconstruction from Noisy Data

Author Sushovan Majhi



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.73.pdf
  • Filesize: 0.69 MB
  • 16 pages

Document Identifiers

Author Details

Sushovan Majhi
  • George Washington University, Washington D.C., USA

Acknowledgements

The author would like to thank Henry Adams for providing constructive feedback on the manuscript, and for hosting the author at the University of Florida, Gainesville during the summer of 2023.

Cite AsGet BibTex

Sushovan Majhi. Demystifying Latschev’s Theorem: Manifold Reconstruction from Noisy Data. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 73:1-73:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.73

Abstract

For a closed Riemannian manifold ℳ and a metric space S with a small Gromov-Hausdorff distance to it, Latschev’s theorem guarantees the existence of a sufficiently small scale β > 0 at which the Vietoris-Rips complex of S is homotopy equivalent to ℳ. Despite being regarded as a stepping stone to the topological reconstruction of Riemannian manifolds from a noisy data, the result is only a qualitative guarantee. Until now, it had been elusive how to quantitatively choose such a proximity scale β in order to provide sampling conditions for S to be homotopy equivalent to ℳ. In this paper, we prove a stronger and pragmatic version of Latschev’s theorem, facilitating a simple description of β using the sectional curvatures and convexity radius of ℳ as the sampling parameters. Our study also delves into the topological recovery of a closed Euclidean submanifold from the Vietoris-Rips complexes of a Hausdorff close Euclidean subset. As already known for Čech complexes, we show that Vietoris-Rips complexes also provide topologically faithful reconstruction guarantees for submanifolds.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Algebraic topology
Keywords
  • Vietoris-Rips complex
  • submanifold reconstruction
  • manifold reconstruction
  • Latschev’s theorem
  • homotopy Equivalence

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Michał Adamaszek, Henry Adams, and Florian Frick. Metric reconstruction via optimal transport. SIAM Journal on Applied Algebra and Geometry, 2:597-619, 2018. URL: https://doi.org/10.1137/17M1148025.
  2. Henry Adams and Joshua Mirth. Metric thickenings of Euclidean submanifolds. Topology and its Applications, 254:69-84, March 2019. URL: https://doi.org/10.1016/j.topol.2018.12.014.
  3. Dominique Attali and André Lieutier. Geometry driven collapses for converting a cech complex into a triangulation of a nicely triangulable shape. CoRR, abs/1304.3680, 2013. URL: https://arxiv.org/abs/1304.3680.
  4. Dominique Attali, André Lieutier, and David Salinas. Vietoris-Rips complexes also provide topologically correct reconstructions of sampled shapes. Computational Geometry, 46(4):448-465, 2013. 27th Annual Symposium on Computational Geometry (SoCG 2011). URL: https://doi.org/10.1016/j.comgeo.2012.02.009.
  5. M. Berger. A Panoramic View of Riemannian Geometry. Springer Berlin Heidelberg, 2007. URL: https://books.google.com/books?id=d_SsagQckaQC.
  6. Richard L Bishop and Richard J Crittenden. Geometry of manifolds, volume 344 of AMS Chelsea Publishing. AMS Chelsea Pub, Providence, R.I, 2001. Google Scholar
  7. Manfredo do. Carmo. Riemannian geometry / Manfredo do Carmo ; translated by Francis Flaherty. Mathematics. Theory and applications. Birkhäuser, Boston, 1992. Google Scholar
  8. Erin W. Chambers, Vin de Silva, Jeff Erickson, and Robert Ghrist. Vietoris-Rips complexes of planar point sets. Discrete & Computational Geometry, 44(1):75-90, July 2010. URL: https://doi.org/10.1007/s00454-009-9209-8.
  9. Frédéric Chazal, Vin De Silva, and Steve Oudot. Persistence stability for geometric complexes. Geometriae Dedicata, 173(1):193-214, 2014. Google Scholar
  10. Frédéric Chazal and André Lieutier. Stability and computation of topological invariants of solids in ℝⁿ. Discrete & Computational Geometry, 37(4):601-617, 2007. Google Scholar
  11. Ludwig Danzer. "Helly’s theorem and its relatives," in convexity. In Proc. Symp. Pure Math., volume 7, pages 101-180. Amer. Math. Soc., 1963. Google Scholar
  12. B. V. Dekster. An extension of Jung’s Theorem. Israel Journal of Mathematics, 50:169-180, 1985. Google Scholar
  13. B. V. Dekster. The Jung Theorem in metric spaces of curvature bounded above. Proceedings of the American Mathematical Society, 125(8):2425-2433, 1997. URL: https://doi.org/10.1090/s0002-9939-97-03842-2.
  14. Boris V. Dekster. The Jung Theorem for spherical and hyperbolic spaces. Acta Mathematica Hungarica, 67:315-331, 1995. Google Scholar
  15. Brittany Terese Fasy, Rafal Komendarczyk, Sushovan Majhi, and Carola Wenk. On the reconstruction of geodesic subspaces of ℝⁿ. International Journal of Computational Geometry & Applications, 32(01n02):91-117, 2022. URL: https://doi.org/10.1142/S0218195922500066.
  16. Greg Friedman. An elementary illustrated introduction to simplicial sets. CoRR, 2008. URL: https://arxiv.org/abs/0809.4221.
  17. Jean-Claude Hausmann. On the Vietoris-Rips Complexes and a Cohomology Theory for Metric Spaces. In Frank Quinn, editor, Prospects in Topology (AM-138), Proceedings of a Conference in Honor of William Browder. (AM-138), pages 175-188. Princeton University Press, 1995. Google Scholar
  18. Jisu Kim, Jaehyeok Shin, Frédéric Chazal, Alessandro Rinaldo, and Larry Wasserman. Homotopy reconstruction via the Čech complex and the Vietoris-Rips complex. In 36th International Symposium on Computational Geometry (SoCG 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. Google Scholar
  19. J. Latschev. Vietoris-Rips complexes of metric spaces near a closed Riemannian manifold. Archiv der Mathematik, 77(6):522-528, December 2001. URL: https://doi.org/10.1007/PL00000526.
  20. Boštjan Lemež and Žiga Virk. Finite reconstruction with selective Rips complexes. CoRR, 2022. Google Scholar
  21. Sushovan Majhi. Demystifying Latschev’s Theorem: Manifold Reconstruction from Noisy Data. arXiv preprint, 2023. URL: https://arxiv.org/abs/2305.17288.
  22. Sushovan Majhi. VietorisendashRips complexes of metric spaces near a metric graph. Journal of Applied and Computational Topology, May 2023. URL: https://doi.org/10.1007/s41468-023-00122-z.
  23. John Milnor. The geometric realization of a semi-simplicial complex. Annals of Mathematics, 65(2):357-362, 1957. URL: http://www.jstor.org/stable/1969967.
  24. James R. Munkres. Elements Of Algebraic Topology. Addison-Wesley Publishing Company, Second edition, 1996. Google Scholar
  25. Partha Niyogi, Stephen Smale, and Shmuel Weinberger. Finding the homology of submanifolds with high confidence from random samples. Discrete And Computational Geometry, 39. 1-3:419-441, 2008. Google Scholar
  26. Edwin H Spanier. Algebraic topology, volume 55. Springer Science & Business Media, 1994. Google Scholar
  27. L. Vietoris. Über den höheren zusammenhang kompakter räume und eine klasse von zusammenhangstreuen abbildungen. Mathematische Annalen, 97:454-472, 1927. URL: http://eudml.org/doc/182647.
  28. Žiga Virk. Rips complexes as nerves and a functorial Dowker-nerve diagram. Mediterr. J. Math., 18(2), April 2021. Google Scholar