LIPIcs.SoCG.2024.77.pdf
- Filesize: 0.76 MB
- 16 pages
Schaefer’s dichotomy theorem states that a Boolean constraint satisfaction problem (CSP) is polynomial-time solvable if one of four given conditions holds for every type of constraint allowed in its instances. Otherwise, it is NP-complete. In this paper, we analyze Boolean CSPs in terms of their topological complexity, instead of their computational complexity. Motivated by complexity and topological universality results in computational geometry, we attach a natural topological space to the set of solutions of a Boolean CSP and introduce the notion of projection-universality. We prove that a Boolean CSP is projection-universal if and only if it is categorized as NP-complete by Schaefer’s dichotomy theorem, showing that the dichotomy translates exactly from computational to topological complexity. We show a similar dichotomy for SAT variants and homotopy-universality.
Feedback for Dagstuhl Publishing