A Topological Version of Schaefer’s Dichotomy Theorem

Authors Patrick Schnider , Simon Weber



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.77.pdf
  • Filesize: 0.76 MB
  • 16 pages

Document Identifiers

Author Details

Patrick Schnider
  • Department of Computer Science, ETH Zürich, Switzerland
Simon Weber
  • Department of Computer Science, ETH Zürich, Switzerland

Acknowledgements

We thank Tillmann Miltzow and Sebastian Meyer for the helpful discussions. We further thank the SoCG reviewers for their helpful comments and pointing out related work.

Cite AsGet BibTex

Patrick Schnider and Simon Weber. A Topological Version of Schaefer’s Dichotomy Theorem. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 77:1-77:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.77

Abstract

Schaefer’s dichotomy theorem states that a Boolean constraint satisfaction problem (CSP) is polynomial-time solvable if one of four given conditions holds for every type of constraint allowed in its instances. Otherwise, it is NP-complete. In this paper, we analyze Boolean CSPs in terms of their topological complexity, instead of their computational complexity. Motivated by complexity and topological universality results in computational geometry, we attach a natural topological space to the set of solutions of a Boolean CSP and introduce the notion of projection-universality. We prove that a Boolean CSP is projection-universal if and only if it is categorized as NP-complete by Schaefer’s dichotomy theorem, showing that the dichotomy translates exactly from computational to topological complexity. We show a similar dichotomy for SAT variants and homotopy-universality.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Algebraic topology
  • Theory of computation → Problems, reductions and completeness
  • Theory of computation → Complexity theory and logic
Keywords
  • Computational topology
  • Boolean CSP
  • satisfiability
  • computational complexity
  • solution space
  • homotopy universality
  • homological connectivity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. The art gallery problem is ∃ℝ-complete. Journal of the ACM, 69(1), 2021. URL: https://doi.org/10.1145/3486220.
  2. Eric Allender, Michael Bauland, Neil Immerman, Henning Schnoor, and Heribert Vollmer. The complexity of satisfiability problems: Refining Schaefer’s theorem. Journal of Computer and System Sciences, 75(4):245-254, 2009. URL: https://doi.org/10.1016/j.jcss.2008.11.001.
  3. Manuel Aprile and Samuel Fiorini. Regular matroids have polynomial extension complexity. Mathematics of Operations Research, 47(1):540-559, 2022. URL: https://doi.org/10.1287/moor.2021.1137.
  4. David Avis and Hans R. Tiwary. On the extension complexity of combinatorial polytopes. In Fedor V. Fomin, Rūsiņš Freivalds, Marta Kwiatkowska, and David Peleg, editors, Automata, Languages, and Programming, pages 57-68, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/978-3-642-39206-1_6.
  5. Libor Barto, Andrei Krokhin, and Ross Willard. Polymorphisms, and How to Use Them. In Andrei Krokhin and Stanislav Zivny, editors, The Constraint Satisfaction Problem: Complexity and Approximability, volume 7 of Dagstuhl Follow-Ups, pages 1-44. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2017. URL: https://doi.org/10.4230/DFU.Vol7.15301.1.
  6. Daniel Bertschinger, Nicolas El Maalouly, Tillmann Miltzow, Patrick Schnider, and Simon Weber. Topological art in simple galleries. In Symposium on Simplicity in Algorithms (SOSA), pages 87-116. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977066.8.
  7. Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, and Simon Weber. Training fully connected neural networks is ∃ℝ-complete. arXiv preprint, 2022. URL: https://doi.org/10.48550/arXiv.2204.01368.
  8. Jósef Blass and Włodzimierz Holsztyński. Cubical polyhedra and homotopy, iii. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, 53(3-4):275-279, September 1972. URL: http://eudml.org/doc/295890.
  9. Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Real Algebraic Geometry. Springer, 1998. URL: https://doi.org/10.1007/978-3-662-03718-8.
  10. Manuel Bodirsky and Jan Kára. The complexity of temporal constraint satisfaction problems. J. ACM, 57(2), February 2010. URL: https://doi.org/10.1145/1667053.1667058.
  11. Manuel Bodirsky and Michael Pinsker. Schaefer’s theorem for graphs. Journal of the ACM, 62(3), 2015. URL: https://doi.org/10.1145/2764899.
  12. Glen E. Bredon. Topology and Geometry. Graduate texts in mathematics. Springer-Verlag, 1993. URL: https://doi.org/10.1007/978-1-4757-6848-0.
  13. Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 319-330, 2017. URL: https://doi.org/10.1109/FOCS.2017.37.
  14. John Canny. Some algebraic and geometric computations in PSPACE. In STOC '88: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pages 460-467, 1988. URL: https://doi.org/10.1145/62212.62257.
  15. Nadia Creignou and Miki Hermann. Complexity of generalized satisfiability counting problems. Information and Computation, 125(1):1-12, 1996. URL: https://doi.org/10.1006/inco.1996.0016.
  16. Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity Classifications of Boolean Constraint Satisfaction Problems. Society for Industrial and Applied Mathematics, 2001. URL: https://doi.org/10.1137/1.9780898718546.
  17. Ruchira S. Datta. Universality of Nash equilibria. Mathematics of Operations Research, 28(3):424-432, 2003. Google Scholar
  18. Michael G. Dobbins, Andreas Holmsen, and Tillmann Miltzow. A universality theorem for nested polytopes. arXiv preprint, 2019. URL: https://doi.org/10.48550/arXiv.1908.02213.
  19. Samuel Eilenberg and Norman Steenrod. Foundations of Algebraic Topology. Princeton University Press, Princeton, 1952. URL: https://doi.org/10.1515/9781400877492.
  20. Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans R. Tiwary, and Ronald de Wolf. Linear vs. semidefinite extended formulations: Exponential separation and strong lower bounds. In Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, STOC '12, pages 95-106, New York, NY, USA, 2012. Association for Computing Machinery. URL: https://doi.org/10.1145/2213977.2213988.
  21. Mika Göös, Rahul Jain, and Thomas Watson. Extension complexity of independent set polytopes. SIAM Journal on Computing, 47(1):241-269, 2018. URL: https://doi.org/10.1137/16M109884X.
  22. Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002. Google Scholar
  23. Heisuke Hironaka. Triangulations of algebraic sets. In Robin Hartshorne, editor, Algebraic Geometry - Arcata 1974, volume 29 of Proceedings of Symposia in Pure Mathematics, pages 165-185, 1975. URL: https://doi.org/10.1090/pspum/029.
  24. Kyle R. Hofmann. Triangulation of locally semi-algebraic spaces. PhD thesis, University of Michigan, 2009. URL: https://hdl.handle.net/2027.42/63851.
  25. Volker Kaibel and Stefan Weltge. A short proof that the extension complexity of the correlation polytope grows exponentially. Discrete & Computational Geometry, 53(2):397-401, March 2015. URL: https://doi.org/10.1007/s00454-014-9655-9.
  26. Eunjung Kim, Arnaud de Mesmay, and Tillmann Miltzow. Representing matroids over the reals is ∃ℝ-complete. arXiv preprint, 2023. URL: https://doi.org/10.48550/arXiv.2301.03221.
  27. Vladimir Kolmogorov, Andrei Krokhin, and Michal Rolínek. The complexity of general-valued CSPs. SIAM Journal on Computing, 46(3):1087-1110, 2017. URL: https://doi.org/10.1137/16M1091836.
  28. Marcin Kozik and Joanna Ochremiak. Algebraic properties of valued constraint satisfaction problem. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages, and Programming, pages 846-858, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg. Google Scholar
  29. Andrei Krokhin, Jakub Opršal, Marcin Wrochna, and Stanislav Živný. Topology and adjunction in promise constraint satisfaction. SIAM Journal on Computing, 52(1):38-79, 2023. URL: https://doi.org/10.1137/20M1378223.
  30. Tillmann Miltzow and Reinier F. Schmiermann. On classifying continuous constraint satisfaction problems. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 781-791, 2022. URL: https://doi.org/10.1109/FOCS52979.2021.00081.
  31. Nicolai Mnëv. The universality theorems on the classification problem of configuration varieties and convex polytopes varieties. In Oleg Y. Viro, editor, Topology and geometry - Rohlin seminar, pages 527-543. Springer-Verlag Berlin Heidelberg, 1988. Google Scholar
  32. Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4), 2018. URL: https://doi.org/10.3390/a11040052.
  33. Sebastian Pokutta and Mathieu Van Vyve. A note on the extension complexity of the knapsack polytope. Operations Research Letters, 41(4):347-350, 2013. URL: https://doi.org/10.1016/j.orl.2013.03.010.
  34. Jürgen Richter-Gebert and Günter M. Ziegler. Realization spaces of 4-polytopes are universal. Bulletin of the American Mathematical Society, 32(4):403-412, 1995. URL: https://doi.org/10.1090/S0273-0979-1995-00604-X.
  35. Gerhard Ringel. Teilungen der Ebene durch Geraden oder topologische Geraden. Mathematische Zeitschrift, 64(1):79-102, December 1956. URL: https://doi.org/10.1007/BF01166556.
  36. Marcus Schaefer. Complexity of some geometric and topological problems. In David Eppstein and Emden R. Gansner, editors, GD 2009: Graph Drawing, volume 5849 of Lecture Notes in Computer Science, pages 334-344, 2010. URL: https://doi.org/10.1007/978-3-642-11805-0_32.
  37. Marcus Schaefer and Daniel Štefankovič. The complexity of tensor rank. Theory of Computing Systems, 62(5):1161-1174, 2018. URL: https://doi.org/10.1007/s00224-017-9800-y.
  38. Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC '78, pages 216-226, New York, NY, USA, 1978. Association for Computing Machinery. URL: https://doi.org/10.1145/800133.804350.
  39. Yaroslav Shitov. A universality theorem for nonnegative matrix factorizations. arXiv preprint, 2016. URL: https://doi.org/10.48550/arXiv.1606.09068.
  40. Yaroslav Shitov. The complexity of positive semidefinite matrix factorization. SIAM Journal on Optimization, 27(3):1898-1909, 2017. URL: https://doi.org/10.1137/16M1080616.
  41. Stephen Smale. A Vietoris mapping theorem for homotopy. Proceedings of the American Mathematical Society, 8(3):604-610, 1957. Google Scholar
  42. Jack Stade and Jamie Tucker-Foltz. Topological universality of the art gallery problem. In Erin W. Chambers and Joachim Gudmundsson, editors, 39th International Symposium on Computational Geometry, SoCG 2023, June 12-15, 2023, Dallas, Texas, USA, volume 258 of LIPIcs, pages 58:1-58:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.SoCG.2023.58.
  43. Edward R. Swart. P=NP. Report No. CIS86-02, Department of Computer and Information Science, University of Guelph, Ontario, Canada, 194, 1986. Google Scholar
  44. Leopold Vietoris. Über die Homologiegruppen der Vereinigung zweier Komplexe. Monatshefte für Mathematik und Physik, 37(1):159-162, December 1930. URL: https://doi.org/10.1007/BF01696765.
  45. Mihalis Yannakakis. Expressing combinatorial optimization problems by linear programs. Journal of Computer and System Sciences, 43(3):441-466, 1991. URL: https://doi.org/10.1016/0022-0000(91)90024-Y.
  46. Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. Journal of the ACM, 67(5), 2020. URL: https://doi.org/10.1145/3402029.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail