Faster Approximation Scheme for Euclidean k-TSP

Authors Ernest van Wijland, Hang Zhou



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.81.pdf
  • Filesize: 0.71 MB
  • 12 pages

Document Identifiers

Author Details

Ernest van Wijland
  • École Normale Supérieure Paris, France
Hang Zhou
  • École Polytechnique, Institut Polytechnique de Paris, France

Acknowledgements

We thank Tobias Mömke, Noé Weeks, and Antoine Stark for discussions.

Cite AsGet BibTex

Ernest van Wijland and Hang Zhou. Faster Approximation Scheme for Euclidean k-TSP. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 81:1-81:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.81

Abstract

In the Euclidean k-traveling salesman problem (k-TSP), we are given n points in the d-dimensional Euclidean space, for some fixed constant d ≥ 2, and a positive integer k. The goal is to find a shortest tour visiting at least k points. We give an approximation scheme for the Euclidean k-TSP in time n⋅2^O(1/ε^{d-1})⋅(log n)^{2d²⋅2^d}. This improves Arora’s approximation scheme of running time n⋅k⋅(log n)^(O(√d/ε))^{d-1}} [J. ACM 1998]. Our algorithm is Gap-ETH tight and can be derandomized by increasing the running time by a factor O(n^d).

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Combinatorial optimization
Keywords
  • approximation algorithms
  • optimization
  • traveling salesman problem

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. Journal of the ACM (JACM), 45(5):753-782, 1998. Google Scholar
  2. Baruch Awerbuch, Yossi Azar, Avrim Blum, and Santosh Vempala. Improved approximation guarantees for minimum-weight k-trees and prize-collecting salesmen. In Proceedings of the twenty-seventh annual ACM symposium on Theory of Computing (STOC), pages 277-283, 1995. Google Scholar
  3. Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Information and Computation, 243:86-111, 2015. Google Scholar
  4. Michael R. Garey, Ronald L. Graham, and David S. Johnson. Some NP-complete geometric problems. In Proceedings of the eighth annual ACM Symposium on Theory of Computing (STOC), pages 10-22, 1976. Google Scholar
  5. Sariel Har-Peled and Benjamin Raichel. Net and prune: A linear time algorithm for Euclidean distance problems. Journal of the ACM (JACM), 62(6):1-35, 2015. Google Scholar
  6. Sándor Kisfaludi-Bak, Jesper Nederlof, and Karol Węgrzycki. A Gap-ETH-tight approximation scheme for Euclidean TSP. In IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 351-362, 2021. Full version at URL: https://arxiv.org/abs/2011.03778.
  7. Stavros G. Kolliopoulos and Satish Rao. A nearly linear-time approximation scheme for the Euclidean k-median problem. SIAM Journal on Computing, 37(3):757-782, 2007. Google Scholar
  8. Cristian S. Mata and Joseph S. B. Mitchell. Approximation algorithms for geometric tour and network design problems. In Proceedings of the eleventh annual Symposium on Computational Geometry (SoCG), pages 360-369, 1995. Google Scholar
  9. Joseph SB Mitchell, Avrim Blum, Prasad Chalasani, and Santosh Vempala. A constant-factor approximation algorithm for the geometric k-mst problem in the plane. SIAM Journal on Computing, 28(3):771-781, 1998. Google Scholar
  10. Satish B Rao and Warren D Smith. Approximating geometrical graphs via “spanners” and “banyans”. In Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages 540-550, 1998. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail