Optimal In-Place Compaction of Sliding Cubes (Media Exposition)

Authors Irina Kostitsyna , Tim Ophelders , Irene Parada , Tom Peters , Willem Sonke , Bettina Speckmann



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.89.pdf
  • Filesize: 5.14 MB
  • 4 pages

Document Identifiers

Author Details

Irina Kostitsyna
  • TU Eindhoven, The Netherlands
Tim Ophelders
  • Utrecht University, The Netherlands
  • TU Eindhoven, The Netherlands
Irene Parada
  • Universitat Politècnica de Catalunya, Barcelona, Spain
Tom Peters
  • TU Eindhoven, The Netherlands
Willem Sonke
  • TU Eindhoven, The Netherlands
Bettina Speckmann
  • TU Eindhoven, The Netherlands

Cite AsGet BibTex

Irina Kostitsyna, Tim Ophelders, Irene Parada, Tom Peters, Willem Sonke, and Bettina Speckmann. Optimal In-Place Compaction of Sliding Cubes (Media Exposition). In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 89:1-89:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.89

Abstract

The sliding cubes model is a well-established theoretical framework that supports the analysis of reconfiguration algorithms for modular robots consisting of face-connected cubes. This note accompanies a video that explains our in-place algorithm for reconfiguration in the sliding cubes model. Specifically, our algorithm [Irina Kostitsyna et al., 2023] reconfigures any n-cube configuration into a compact canonical shape using a number of moves proportional to the sum of coordinates of the input cubes. As is common in the literature, we can then reconfigure between two arbitrary shapes via their canonical configurations. The number of moves performed by our algorithm is asymptotically worst-case optimal and strictly improves upon the current state-of-the-art.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Sliding cubes
  • Reconfiguration algorithm
  • Modular robots

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Zachary Abel and Scott Duke Kominers. Universal reconfiguration of (hyper-)cubic robots. arXiv e-Prints, 2011. URL: https://arxiv.org/abs/0802.3414.
  2. Irina Kostitsyna, Tim Ophelders, Irene Parada, Tom Peters, Willem Sonke, and Bettina Speckmann. Optimal in-place compaction of sliding cubes. arXiv e-Prints, 2023. URL: https://arxiv.org/abs/2312.15096.
  3. Irina Kostitsyna, Tim Ophelders, Irene Parada, Tom Peters, Willem Sonke, and Bettina Speckmann. Optimal in-place compaction of sliding cubes. In Proc. 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), 2024. To appear. Google Scholar
  4. Willem Sonke and Jules Wulms. An interactive framework for reconfiguration in the sliding square model (Media Exposition). In 38th International Symposium on Computational Geometry (SoCG), 2022. URL: https://doi.org/10.4230/LIPIcs.SoCG.2022.70.
  5. Frederick Stock, Hugo Akitaya, Matias Korman, Scott Kominers, and Zachary Abel. A universal in-place reconfiguration algorithm for sliding cube-shaped robots in quadratic time. In Proc. 40th International Symposium on Computational Geometry (SoCG), LIPIcs, volume 293, pages 1:1-1:14, 2024. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail