Ipelets for the Convex Polygonal Geometry (Media Exposition)

Authors Nithin Parepally, Ainesh Chatterjee, Auguste H. Gezalyan , Hongyang Du, Sukrit Mangla, Kenny Wu, Sarah Hwang, David M. Mount



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.92.pdf
  • Filesize: 0.77 MB
  • 7 pages

Document Identifiers

Author Details

Nithin Parepally
  • Department of Computer Science, University of Maryland, College Park, MD, USA
Ainesh Chatterjee
  • Department of Computer Science, University of Maryland, College Park, MD, USA
Auguste H. Gezalyan
  • Department of Computer Science, University of Maryland, College Park, MD, USA
Hongyang Du
  • Department of Computer Science, University of Maryland, College Park, MD, USA
Sukrit Mangla
  • Department of Computer Science, University of Maryland, College Park, MD, USA
Kenny Wu
  • Department of Computer Science, University of Maryland, College Park, MD, USA
Sarah Hwang
  • Department of Computer Science, University of Maryland, College Park, MD, USA
David M. Mount
  • Department of Computer Science, University of Maryland, College Park, MD, USA

Cite AsGet BibTex

Nithin Parepally, Ainesh Chatterjee, Auguste H. Gezalyan, Hongyang Du, Sukrit Mangla, Kenny Wu, Sarah Hwang, and David M. Mount. Ipelets for the Convex Polygonal Geometry (Media Exposition). In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 92:1-92:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.92

Abstract

There are many structures, both classical and modern, involving convex polygonal geometries whose deeper understanding would be facilitated through interactive visualizations. The Ipe extensible drawing editor, developed by Otfried Cheong, is a widely used software system for generating geometric figures. One of its features is the capability to extend its functionality through programs called Ipelets. In this media submission, we showcase a collection of new Ipelets that construct a variety of geometric objects based on polygonal geometries. These include Macbeath regions, metric balls in the forward and reverse Funk distance, metric balls in the Hilbert metric, polar bodies, the minimum enclosing ball of a point set, and minimum spanning trees in both the Funk and Hilbert metrics. We also include a number of utilities on convex polygons, including union, intersection, subtraction, and Minkowski sum (previously implemented as a CGAL Ipelet).

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Hilbert metric
  • Macbeath Regions
  • Polar Bodies
  • Convexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Ahmed Abdelkader and David M. Mount. Economical Delone sets for approximating convex bodies. In Proc. 16th Scand. Workshop Algorithm Theory, pages 4:1-4:12, 2018. Google Scholar
  2. Ahmed Abdelkader and David M Mount. Smooth distance approximation. In 31st Annual European Symposium on Algorithms (ESA 2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2023. Google Scholar
  3. Ahmed Abdelkader and David M Mount. Convex approximation and the Hilbert geometry. In 2024 Symposium on Simplicity in Algorithms (SOSA), pages 286-298. SIAM, 2024. Google Scholar
  4. Rahul Arya, Sunil Arya, Guilherme D da Fonseca, and David Mount. Optimal bound on the combinatorial complexity of approximating polytopes. ACM Transactions on Algorithms, 18(4):1-29, 2022. Google Scholar
  5. Sunil Arya, Guilherme D Da Fonseca, and David M Mount. Optimal area-sensitive bounds for polytope approximation. In Proceedings of the twenty-eighth annual symposium on Computational geometry, pages 363-372, 2012. Google Scholar
  6. Sunil Arya, Guilherme D da Fonseca, and David M Mount. Optimal approximate polytope membership. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 270-288. SIAM, 2017. Google Scholar
  7. Sunil Arya, Guilherme D da Fonseca, and David M Mount. Economical convex coverings and applications. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1834-1861. SIAM, 2023. Google Scholar
  8. Adrian Baddeley, Imre Bárány, and Rolf Schneider. Random polytopes, convex bodies, and approximation. Stochastic Geometry: Lectures given at the CIME Summer School held in Martina Franca, Italy, September 13-18, 2004, pages 77-118, 2007. Google Scholar
  9. Imre Bárány and David G Larman. Convex bodies, economic cap coverings, random polytopes. Mathematika, 35(2):274-291, 1988. Google Scholar
  10. Thomas Bläsius. poincare. 2021-03-31. URL: https://github.com/thobl/ipelets.
  11. Nicky Blomsma, Bart de Rooy, Frank Gerritse, Rick van der Spek, Prejaas Tewarie, Arjan Hillebrand, Wim M Otte, Cornelis Jan Stam, and Edwin van Dellen. Minimum spanning tree analysis of brain networks: A systematic review of network size effects, sensitivity for neuropsychiatric pathology, and disorder specificity. Network Neuroscience, 6(2):301-319, 2022. Google Scholar
  12. Jakob Bossek and Frank Neumann. Evolutionary diversity optimization and the minimum spanning tree problem. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 198-206, 2021. Google Scholar
  13. Marian Brändle. Copy tools Ipelet. URL: https://github.com/Marian-Braendle/ipe-copytools.
  14. Hervé Brönnimann and Bernard Chazelle. How hard is halfspace range searching? In Proceedings of the eighth annual symposium on Computational geometry, pages 271-275, 1992. Google Scholar
  15. Madeline Bumpus, Caesar Dai, Auguste H Gezalyan, Sam Munoz, Renita Santhoshkumar, Songyu Ye, and David M Mount. Software and analysis for dynamic Voronoi diagrams in the Hilbert metric. arXiv preprint arXiv:2304.02745, 2023. Google Scholar
  16. Otfried Cheong. The IPE extensible drawing editor. Version 7.2.28, 2024-03-12. URL: https://ipe.otfried.org/.
  17. Bruno Colbois, Constantin Vernicos, and Patrick Verovic. Hilbert geometry for convex polygonal domains. J. Geom., 100(1-2):37-64, 2011. URL: https://doi.org/10.1007/s00022-011-0066-2.
  18. Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational Geometry: Algorithms and Applications. Springer, 3rd edition, 2010. Google Scholar
  19. Maurice de Gosson and Charlyne de Gosson. Symplectic polar duality, quantum blobs, and generalized Gaussians. Symmetry, 14(9):1890, 2022. Google Scholar
  20. Maurice de Gosson and Charlyne de Gosson. Pointillisme à la signac and construction of a quantum fiber bundle over convex bodies. Foundations of Physics, 53(2):43, 2023. Google Scholar
  21. Maurice de Gosson and Charlyne de Gosson. Symplectic and Lagrangian polar duality; Applications to quantum information geometry. arXiv preprint arXiv:2309.07775, 2023. Google Scholar
  22. Maurice A De Gosson. Polar duality between pairs of transversal Lagrangian planes. Applications to uncertainty principles. Bulletin des Sciences Mathématiques, 179:103171, 2022. Google Scholar
  23. Olivier Devillers, Sébastien Loriot, and Sylvain Pion. CGAL Ipelets. In CGAL User and Reference Manual. CGAL Editorial Board, 5.6.1 edition, 2024. URL: https://doc.cgal.org/5.6.1/Manual/packages.html#PkgCGALIpelets.
  24. Lorenzo Diazzi and Marco Attene. Convex polyhedral meshing for robust solid modeling. ACM Transactions on Graphics (TOG), 40(6):1-16, 2021. Google Scholar
  25. Marek Gagolewski, Anna Cena, Maciej Bartoszuk, and Łukasz Brzozowski. Clustering with minimum spanning trees: How good can it be? arXiv preprint arXiv:2303.05679, 2023. Google Scholar
  26. Auguste Gezalyan, Soo Kim, Carlos Lopez, Daniel Skora, Zofia Stefankovic, and David M Mount. Delaunay triangulations in the Hilbert metric. arXiv preprint arXiv:2312.05987, 2023. Google Scholar
  27. Auguste H Gezalyan and David M Mount. Voronoi diagrams in the Hilbert metric. In 39th International Symposium on Computational Geometry (SoCG 2023). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2023. Google Scholar
  28. Mostafa Ghandehari and Horst Martini. On self-circumferences in Minkowski planes. Extracta Mathematicae, 34:19-28, 2019. URL: https://doi.org/10.17398/2605-5686.34.1.19.
  29. James Guthrie, Marin Kobilarov, and Enrique Mallada. Closed-form Minkowski sum approximations for efficient optimization-based collision avoidance. In 2022 American Control Conference (ACC), pages 3857-3864. IEEE, 2022. Google Scholar
  30. Mingyu Jung and Myung-Soo Kim. Maximum-clearance planar motion planning based on recent developments in computing Minkowski sums and Voronoi diagrams. In Pacific Graphics Short Papers, Posters, and Work-in-Progress Papers, 2021. URL: https://doi.org/10.2312/pg.20211382.
  31. A. M. Macbeath. A theorem on non-homogeneous lattices. Annals of Mathematics, 56(2):269-293, 1952. URL: http://www.jstor.org/stable/1969800.
  32. Andrew Martchenko. pollyfillet. 2019-02-26. URL: https://github.com/AndrewMartchenko/my-ipelets/tree/master/polyfillet.
  33. Andrew Martchenko. tangentlines. 2019-02-26. URL: https://github.com/AndrewMartchenko/my-ipelets/tree/master/tangentlines.
  34. Márton Naszódi, Fedor Nazarov, and Dmitry Ryabogin. Fine approximation of convex bodies by polytopes. American Journal of Mathematics, 142(3):809-820, 2020. Google Scholar
  35. Frank Nielsen and Laetitia Shao. On balls in a Hilbert polygonal geometry (multimedia contribution). In Proc. 33rd Internat. Sympos. Comput. Geom., volume 77 of Leibniz International Proceedings in Informatics (LIPIcs), pages 67:1-67:4. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.SoCG.2017.67.
  36. Frank Nielsen and Ke Sun. Clustering in Hilbert’s projective geometry: The case studies of the probability simplex and the elliptope of correlation matrices. In Frank Nielsen, editor, Geometric Structures of Information, pages 297-331. Springer Internat. Pub., 2019. URL: https://doi.org/10.1007/978-3-030-02520-5_11.
  37. Frank Nielsen and Ke Sun. Non-linear embeddings in Hilbert simplex geometry. In Topological, Algebraic and Geometric Learning Workshops 2023, pages 254-266. PMLR, 2023. Google Scholar
  38. Athanase Papadopoulos and Marc Troyanov. From Funk to Hilbert geometry. In Handbook of Hilbert geometry, volume 22 of IRMA Lectures in Mathematics and Theoretical Physics, pages 33-68. European Mathematical Society Publishing House, 2014. URL: https://doi.org/10.4171/147-1/2.
  39. Athanase Papadopoulos and Sumio Yamada. Timelike Hilbert and Funk geometries. Differential Geometry and its Applications, 67:101554, 2019. Google Scholar
  40. Lluís Alemany Puig. Embedding visualizer for IPE. 2022-01-29. URL: https://github.com/lluisalemanypuig/ipe.embedviz.
  41. Günter Rote. Free-space diagram. Version 2, 2010-07-15. URL: https://www.mi.fu-berlin.de/inf/groups/ag-ti/software/ipelets.html.
  42. Sipu Ruan, Karen L Poblete, Yingke Li, Qian Lin, Qianli Ma, and Gregory S Chirikjian. Efficient exact collision detection between ellipsoids and superquadrics via closed-form Minkowski sums. In 2019 International Conference on Robotics and Automation (ICRA), pages 1765-1771. IEEE, 2019. Google Scholar
  43. Hassan Sadeghi. Funk-type Finsler metrics. Journal of Finsler Geometry and its Applications, 2(2):77-88, 2021. Google Scholar
  44. Benjamin Sherman, Jesse Michel, and Michael Carbin. Sound and robust solid modeling via exact real arithmetic and continuity. Proceedings of the ACM on Programming Languages, 3(ICFP):1-29, 2019. Google Scholar
  45. Constantin Vernicos. On the Hilbert geometry of convex polytopes. In Handbook of Hilbert geometry, volume 22 of IRMA Lectures in Mathematics and Theoretical Physics, pages 111-126. European Mathematical Society Publishing House, 2014. URL: https://doi.org/10.48550/arXiv.1406.0733.
  46. Constantin Vernicos and Cormac Walsh. Flag-approximability of convex bodies and volume growth of Hilbert geometries. In Annales Scientifiques de l'École Normale Supérieure, volume 54, pages 1297-1315, 2021. Google Scholar
  47. Siqiang Wang, Qingwei Xu, and Shunying Ji. A novel Minkowski sum contact algorithm for arbitrarily shaped particles constructed by multiple dilated dem models. International Journal of Solids and Structures, 280:112409, 2023. Google Scholar
  48. Xiangfeng Wang, Junping Zhang, and Wenxing Zhang. The distance between convex sets with Minkowski sum structure: Application to collision detection. Computational Optimization and Applications, 77:465-490, 2020. Google Scholar
  49. Changtao Yu and Hongmei Zhu. On a new class of Finsler metrics. Differential Geometry and its Applications, 29(2):244-254, 2011. Google Scholar