A hypergraph H consists of a set V of vertices and a set E of hyperedges that are subsets of V. A t-tuple of H is a subset of t vertices of V. A t-tuple k-coloring of H is a mapping of its t-tuples into k colors. A coloring is called (t,k,f)-polychromatic if each hyperedge of E that has at least f vertices contains tuples of all the k colors. Let f_H(t,k) be the minimum f such that H has a (t,k,f)-polychromatic coloring. For a family of hypergraphs ℋ let f_H(t,k) be the maximum f_H(t,k) over all hypergraphs H in H. Determining f_H(t,k) has been an active research direction in recent years. This is challenging even for t = 1. We present several new results in this direction for t ≥ 2. - Let H be the family of hypergraphs H that is obtained by taking any set P of points in ℝ², setting V: = P and E: = {d ∩ P: d is a disk in ℝ²}. We prove that f_ H(2,k) ≤ 3.7^k, that is, the pairs of points (2-tuples) can be k-colored such that any disk containing at least 3.7^k points has pairs of all colors. We generalize this result to points and balls in higher dimensions. - For the family H of hypergraphs that are defined by grid vertices and axis-parallel rectangles in the plane, we show that f_H(2,k) ≤ √{ck ln k} for some constant c. We then generalize this to higher dimensions, to other shapes, and to tuples of larger size. - For the family H of shrinkable hypergraphs of VC-dimension at most d we prove that f_ H(d+1,k) ≤ c^k for some constant c = c(d). Towards this bound, we obtain a result of independent interest: Every hypergraph with n vertices and with VC-dimension at most d has a (d+1)-tuple T of depth at least n/c, i.e., any hyperedge that contains T also contains n/c other vertices. - For the relationship between t-tuple coloring and vertex coloring in any hypergraph H we establish the inequality 1/e⋅ tk^{1/t} ≤ f_H(t,k) ≤ f_H(1,tk^{1/t}). For the special case of k = 2, referred to as the bichromatic coloring, we prove that t+1 ≤ f_H(t,2) ≤ max{f_H(1,2), t+1}; this improves upon the previous best known upper bound. - We study the relationship between tuple coloring and epsilon nets. In particular we show that if f_H(1,k) = O(k) for a hypergraph H with n vertices, then for any 0 < ε < 1 the t-tuples of H can be partitioned into Ω((εn/t)^t) ε-t-nets. This bound is tight when t is a constant.
@InProceedings{biniaz_et_al:LIPIcs.SoCG.2025.19, author = {Biniaz, Ahmad and De Carufel, Jean-Lou and Maheshwari, Anil and Smid, Michiel and Smorodinsky, Shakhar and Stojakovi\'{c}, Milo\v{s}}, title = {{Polychromatic Coloring of Tuples in Hypergraphs}}, booktitle = {41st International Symposium on Computational Geometry (SoCG 2025)}, pages = {19:1--19:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-370-6}, ISSN = {1868-8969}, year = {2025}, volume = {332}, editor = {Aichholzer, Oswin and Wang, Haitao}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.19}, URN = {urn:nbn:de:0030-drops-231718}, doi = {10.4230/LIPIcs.SoCG.2025.19}, annote = {Keywords: Hypergraph Coloring, Polychromatic Coloring, Geometric Hypergraphs, Cover Decomposable Hypergraphs, Epsilon Nets} }
Feedback for Dagstuhl Publishing