Synthesis of LTL Formulas from Natural Language Texts: State of the Art and Research Directions

Authors Andrea Brunello , Angelo Montanari , Mark Reynolds



PDF
Thumbnail PDF

File

LIPIcs.TIME.2019.17.pdf
  • Filesize: 0.5 MB
  • 19 pages

Document Identifiers

Author Details

Andrea Brunello
  • University of Udine, Italy
Angelo Montanari
  • University of Udine, Italy
Mark Reynolds
  • University of Western Australia, Australia

Cite AsGet BibTex

Andrea Brunello, Angelo Montanari, and Mark Reynolds. Synthesis of LTL Formulas from Natural Language Texts: State of the Art and Research Directions. In 26th International Symposium on Temporal Representation and Reasoning (TIME 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 147, pp. 17:1-17:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.TIME.2019.17

Abstract

Linear temporal logic (LTL) is commonly used in model checking tasks; moreover, it is well-suited for the formalization of technical requirements. However, the correct specification and interpretation of temporal logic formulas require a strong mathematical background and can hardly be done by domain experts, who, instead, tend to rely on a natural language description of the intended system behaviour. In such situations, a system that is able to automatically translate English sentences into LTL formulas, and vice versa, would be of great help. While the task of rendering an LTL formula into a more readable English sentence may be carried out in a relatively easy way by properly parsing the formula, the converse is still an open problem, due to the inherent difficulty of interpreting free, natural language texts. Although several partial solutions have been proposed in the past, the literature still lacks a critical assessment of the work done. We address such a shortcoming, presenting the current state of the art for what concerns the English-to-LTL translation problem, and outlining some possible research directions.

Subject Classification

ACM Subject Classification
  • General and reference → Surveys and overviews
  • Computing methodologies → Natural language processing
  • Computing methodologies → Machine learning
  • Computing methodologies → Temporal reasoning
  • Theory of computation → Evolutionary algorithms
Keywords
  • Evolutionary algorithms
  • Machine learning
  • Natural language processing
  • Semantic parsing
  • Temporal logic

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. ACE project website. Accessed: April 2019. URL: https://www.ldc.upenn.edu/collaborations/past-projects/ace.
  2. AQUAINT corpus website. Accessed: April 2019. URL: https://catalog.ldc.upenn.edu/LDC2002T31.
  3. CAEVO corpus website. Accessed: April 2019. URL: https://www.usna.edu/Users/cs/nchamber/caevo/.
  4. ClearTK GitHub page. Accessed: April 2019. URL: https://cleartk.github.io/cleartk/.
  5. Kansas State University CIS Department, Laboratory for Specification, Analysis, and Transformation of Software (SAnToS Laboratory), Property Pattern Mappings for LTL. Accessed: April 2019. URL: http://patterns.projects.cs.ksu.edu/.
  6. Keras framework website. Accessed: April 2019. URL: https://keras.io.
  7. PredPatt GitHub page. Accessed: April 2019. URL: https://github.com/hltcoe/PredPatt.
  8. PTime website. Accessed: April 2019. URL: http://ws.nju.edu.cn/ptime/.
  9. PyTorch GitHub page. Accessed: April 2019. URL: https://github.com/pytorch.
  10. Semantic parsing with AllenNLP. Accessed: April 2019. URL: https://github.com/allenai/allennlp/blob/master/tutorials/getting_started/semantic_parsing.md.
  11. Sippycup GitHub page. Accessed: April 2019. URL: https://github.com/wcmac/sippycup.
  12. SpaCy website. Accessed: April 2019. URL: https://spacy.io/.
  13. TensorFlow framework website. Accessed: April 2019. URL: https://www.tensorflow.org/.
  14. TIPSem GitHub page. Accessed: April 2019. URL: https://github.com/hllorens/otip.
  15. WASP semantic parser website. Accessed: April 2019. URL: http://www.cs.utexas.edu/users/ml/wasp/.
  16. Mikel Artetxe, Gorka Labaka, and Eneko Agirre. Unsupervised Statistical Machine Translation. CoRR, abs/1809.01272, 2018. URL: http://arxiv.org/abs/1809.01272.
  17. Mikel Artetxe, Gorka Labaka, and Eneko Agirre. An Effective Approach to Unsupervised Machine Translation. CoRR, abs/1902.01313, 2019. URL: http://arxiv.org/abs/1902.01313.
  18. Yoav Artzi. Cornell SPF: Cornell semantic parsing framework. arXiv preprint, 2013. URL: http://arxiv.org/abs/1311.3011.
  19. Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic Parsing on Freebase from Question-Answer Pairs. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, EMNLP, pages 1533-1544, 2013. URL: http://aclweb.org/anthology/D/D13/D13-1160.pdf.
  20. Steven Bethard, Timothy A. Miller, Dmitriy Dligach, Chen Lin, and Guergana Savova. Neural Temporal Relation Extraction. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, EACL, pages 746-751, 2017. URL: https://aclanthology.info/papers/E17-2118/e17-2118.
  21. David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet Allocation. Journal of Machine Learning Research, 3:993-1022, 2003. URL: http://jmlr.org/papers/v3/blei03a.html.
  22. Leo Breiman. Random Forests. Machine Learning, 45(1):5-32, 2001. URL: https://doi.org/10.1023/A:1010933404324.
  23. Angel X. Chang and Christopher D. Manning. SUTime: A library for recognizing and normalizing time expressions. In Proceedings of the 8th International Conference on Language Resources and Evaluation, LREC, pages 3735-3740, 2012. URL: http://www.lrec-conf.org/proceedings/lrec2012/summaries/284.html.
  24. Timothy Chklovski and Patrick Pantel. VerbOcean: Mining the web for fine-grained semantic verb relations. In Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing , EMNLP, pages 33-40, 2004. URL: http://www.aclweb.org/anthology/W04-3205.
  25. Corinna Cortes and Vladimir Vapnik. Support-Vector Networks. Machine Learning, 20(3):273-297, 1995. URL: https://doi.org/10.1007/BF00994018.
  26. Leon Derczynski. Automatically Ordering Events and Times in Text, volume 677 of Studies in Computational Intelligence. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-47241-6.
  27. Wentao Ding, Guanji Gao, Linfeng Shi, and Yuzhong Qu. A Pattern-based Approach to Recognizing Time Expressions. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence, 2019. Google Scholar
  28. Arianna D'Ulizia, Fernando Ferri, and Patrizia Grifoni. A survey of grammatical inference methods for natural language learning. Artificial Intelligence Review, 36(1):1-27, 2011. URL: https://doi.org/10.1007/s10462-010-9199-1.
  29. Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in Property Specifications for Finite-State Verification. In Proceedings of the 1999 International Conference on Software Engineering, ICSE, pages 411-420, 1999. URL: https://doi.org/10.1145/302405.302672.
  30. Juraj Dzifcak, Matthias Scheutz, Chitta Baral, and Paul W. Schermerhorn. What to do and how to do it: Translating natural language directives into temporal and dynamic logic representation for goal management and action execution. In 2009 IEEE International Conference on Robotics and Automation, ICRA, pages 4163-4168, 2009. URL: https://doi.org/10.1109/ROBOT.2009.5152776.
  31. A. E. Eiben and James E. Smith. Introduction to Evolutionary Computing. Natural Computing Series. Springer, 2015. URL: https://doi.org/10.1007/978-3-662-44874-8.
  32. Alessandro Fantechi, Stefania Gnesi, Gioia Ristori, Michele Carenini, Massimo Vanocchi, and Paolo Moreschini. Assisting Requirement Formalization by Means of Natural Language Translation. Formal Methods in System Design, 4(3):243-263, 1994. URL: https://doi.org/10.1007/BF01384048.
  33. Christiane Fellbaum. WordNet. The Encyclopedia of Applied Linguistics, 2012. Google Scholar
  34. Olivier Ferret, Xavier Tannier, Aurélie Névéol, and Julien Tourille. Temporal information extraction from clinical text. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, EACL, pages 739-745, 2017. URL: https://aclanthology.info/papers/E17-2117/e17-2117.
  35. Mikel L. Forcada, Mireia Ginestí-Rosell, Jacob Nordfalk, Jim O'Regan, Sergio Ortiz-Rojas, Juan Antonio Pérez-Ortiz, Felipe Sánchez-Martínez, Gema Ramírez-Sánchez, and Francis M. Tyers. Apertium: a free/open-source platform for rule-based machine translation. Machine Translation, 25(2):127-144, 2011. URL: https://doi.org/10.1007/s10590-011-9090-0.
  36. Ryan Gabbard, Seth Kulick, and Mitchell P. Marcus. Fully Parsing the Penn Treebank. In Proceedings of the Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics, 2006. URL: http://aclweb.org/anthology/N/N06/N06-1024.pdf.
  37. Diana Galvan, Naoaki Okazaki, Koji Matsuda, and Kentaro Inui. Investigating the Challenges of Temporal Relation Extraction from Clinical Text. In Proceedings of the 9th International Workshop on Health Text Mining and Information Analysis 31, 2018, pages 55-64, 2018. URL: https://aclanthology.info/papers/W18-5607/w18-5607.
  38. Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch. PPDB: the paraphrase database. In Proceedings of the Human Language Technologies: Conference of the North American Chapter of the Association of Computational Linguistics, pages 758-764, 2013. URL: http://aclweb.org/anthology/N/N13/N13-1092.pdf.
  39. Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew E. Peters, Michael Schmitz, and Luke Zettlemoyer. AllenNLP: A deep semantic natural language processing platform. CoRR, abs/1803.07640, 2018. URL: http://arxiv.org/abs/1803.07640.
  40. Rob Gerth, Doron A. Peled, Moshe Y. Vardi, and Pierre Wolper. Simple on-the-fly automatic verification of linear temporal logic. In Proceedings of the 15th International Symposium on Protocol Specification, pages 3-18, 1995. Google Scholar
  41. Shalini Ghosh, Daniel Elenius, Wenchao Li, Patrick Lincoln, Natarajan Shankar, and Wilfried Steiner. ARSENAL: automatic requirements specification extraction from natural language. In Proceedings of the 8th NASA Formal Methods International Symposium, pages 41-46, 2016. URL: https://doi.org/10.1007/978-3-319-40648-0_4.
  42. Volker Gruhn and Ralf Laue. Patterns for Timed Property Specifications. Electronic Notes in Theoretical Computer Science, 153(2):117-133, 2006. URL: https://doi.org/10.1016/j.entcs.2005.10.035.
  43. Christopher B. Harris and Ian G. Harris. Generating formal hardware verification properties from Natural Language documentation. In Proceedings of the 9th IEEE International Conference on Semantic Computing, ICSC, pages 49-56, 2015. URL: https://doi.org/10.1109/ICOSC.2015.7050777.
  44. Christopher B. Harris and Ian G. Harris. GLAsT: Learning formal grammars to translate natural language specifications into hardware assertions. In Proceedings of the 2016 Design, Automation & Test in Europe Conference & Exhibition, DATE, pages 966-971, 2016. URL: http://ieeexplore.ieee.org/document/7459447/.
  45. Claude Jard and Thierry Jéron. On-Line Model Checking for Finite Linear Temporal Logic Specifications. In Proceedings of the International Conference on Computer Aided Verification, pages 189-196, 1989. URL: https://doi.org/10.1007/3-540-52148-8_16.
  46. Hans Kamp. A theory of truth and semantic representation. Formal semantics-the essential readings, pages 189-222, 1981. Google Scholar
  47. Rohit J. Kate and Raymond J. Mooney. Using String-Kernels for Learning Semantic Parsers. In Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics ACL, 2006. URL: http://aclweb.org/anthology/P06-1115.
  48. Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M. Rush. OpenNMT: Open-source toolkit for neural machine translation. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ACL, pages 67-72, 2017. URL: https://doi.org/10.18653/v1/P17-4012.
  49. Sascha Konrad and Betty H. C. Cheng. Real-time specification patterns. In Proceedings of the 27th International Conference on Software Engineering, ICSE, pages 372-381, 2005. URL: https://doi.org/10.1145/1062455.1062526.
  50. Saul A. Kripke. Semantical Considerations on Modal Logic. Acta Philosophica Fennica, 16(1963):83-94, 1963. Google Scholar
  51. Guillaume Lample, Alexis Conneau, Ludovic Denoyer, and Marc'Aurelio Ranzato. Unsupervised Machine Translation Using Monolingual Corpora Only. In Proceedings of the 6th International Conference on Learning Representations, ICLR, 2018. URL: https://openreview.net/forum?id=rkYTTf-AZ.
  52. Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic Denoyer, and Marc'Aurelio Ranzato. Phrase-Based & Neural Unsupervised Machine Translation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 5039-5049, 2018. URL: https://aclanthology.info/papers/D18-1549/d18-1549.
  53. Pat Langley and Sean Stromsten. Learning Context-Free Grammars with a Simplicity Bias. In Proceedings of the 11th European Conference on Machine Learning, ECML, pages 220-228, 2000. URL: https://doi.org/10.1007/3-540-45164-1_23.
  54. Egoitz Laparra, Dongfang Xu, and Steven Bethard. From Characters to Time Intervals: New Paradigms for Evaluation and Neural Parsing of Time Normalizations. Transactions of the Association of Computational Linguistics, 6:343-356, 2018. URL: https://transacl.org/ojs/index.php/tacl/article/view/1318.
  55. Hee-Jin Lee, Yaoyun Zhang, Min Jiang, Jun Xu, Cui Tao, and Hua Xu. Identifying direct temporal relations between time and events from clinical notes. BMC Medical Informatics and Decision Making, 18(S-2):23-34, 2018. URL: https://doi.org/10.1186/s12911-018-0627-5.
  56. Kenton Lee, Yoav Artzi, Jesse Dodge, and Luke Zettlemoyer. Context-dependent Semantic Parsing for Time Expressions. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, ACL, pages 1437-1447, 2014. URL: http://aclweb.org/anthology/P/P14/P14-1135.pdf.
  57. Kenton Lee, Luheng He, Mike Lewis, and Luke Zettlemoyer. End-to-end Neural Coreference Resolution. CoRR, abs/1707.07045, 2017. URL: http://arxiv.org/abs/1707.07045.
  58. Artuur Leeuwenberg and Marie-Francine Moens. Temporal Information Extraction by Predicting Relative Time-lines. CoRR, abs/1808.09401, 2018. URL: http://arxiv.org/abs/1808.09401.
  59. Constantine Lignos, Vasumathi Raman, Cameron Finucane, Mitchell P. Marcus, and Hadas Kress-Gazit. Provably correct reactive control from natural language. Autonomous Robots, 38(1):89-105, 2015. URL: https://doi.org/10.1007/s10514-014-9418-8.
  60. Zhengzhong Liu, Teruko Mitamura, and Eduard H. Hovy. Graph-Based Decoding for Event Sequencing and Coreference Resolution. CoRR, abs/1806.05099, 2018. URL: http://arxiv.org/abs/1806.05099.
  61. Hector Llorens, Leon Derczynski, Robert J. Gaizauskas, and Estela Saquete. TIMEN: an open temporal expression normalisation resource. In Proceedings of the 8th International Conference on Language Resources and Evaluation, LREC, pages 3044-3051, 2012. URL: http://www.lrec-conf.org/proceedings/lrec2012/summaries/128.html.
  62. Hector Llorens, Estela Saquete, and Borja Navarro. TIPSem (English and Spanish): Evaluating CRFs and semantic roles in TempEval-2. In Proceedings of the 5th International Workshop on Semantic Evaluation, pages 284-291, 2010. URL: http://aclweb.org/anthology/S/S10/S10-1063.pdf.
  63. Edward Loper and Steven Bird. NLTK: the natural language toolkit. CoRR, cs.CL/0205028, 2002. URL: http://arxiv.org/abs/cs.CL/0205028.
  64. Weicheng Ma, Zhaoheng Ni, Kai Cao, Xiang Li, and Sang Chin. Seq2tree: A tree-structured extension of LSTM network, 2017. URL: https://openreview.net/forum?id=HJ0WtefAW.
  65. Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven Bethard, and David McClosky. The Stanford CoreNLP Natural Language Processing Toolkit. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, ACL, pages 55-60, 2014. URL: http://aclweb.org/anthology/P/P14/P14-5010.pdf.
  66. Pawel P. Mazur and Robert Dale. WikiWars: A new corpus for research on temporal expressions. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, EMNLP, pages 913-922, 2010. URL: http://www.aclweb.org/anthology/D10-1089.
  67. Paramita Mirza. Extracting Temporal and Causal Relations between Events. CoRR, abs/1604.08120, 2016. URL: http://arxiv.org/abs/1604.08120.
  68. Paramita Mirza and Sara Tonelli. CATENA: CAusal and TEmporal relation extraction from NAtural language texts. In Proceedings of the 26th International Conference on Computational Linguistics, COLING, pages 64-75, 2016. URL: http://aclweb.org/anthology/C/C16/C16-1007.pdf.
  69. Smaranda Muresan, Tudor Muresan, and Judith L Klavans. Lexicalized Well-Founded Grammars: Learnability and Merging. Technical Report, Columbia University, 2005. Google Scholar
  70. Daniel Neider and Ivan Gavran. Learning Linear Temporal Properties. In Proceedings of the 2018 Formal Methods in Computer Aided Design Conference, FMCAD, pages 1-10, 2018. Google Scholar
  71. Rani Nelken and Nissim Francez. Automatic Translation of Natural Language System Specifications into Temporal Logic. In Proceedings of the 8th International Conference on Computer Aided Verification, CAV, pages 360-371, 1996. URL: https://doi.org/10.1007/3-540-61474-5_83.
  72. Allen P. Nikora and Galen Balcom. Automated Identification of LTL Patterns in Natural Language Requirements. In Proceedings of the 20th International Symposium on Software Reliability Engineering, ISSRE, pages 185-194, 2009. URL: https://doi.org/10.1109/ISSRE.2009.15.
  73. Qiang Ning, Zhili Feng, and Dan Roth. A Structured Learning Approach to Temporal Relation Extraction. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP, pages 1027-1037, 2017. URL: https://aclanthology.info/papers/D17-1108/d17-1108.
  74. Qiang Ning, Hao Wu, Haoruo Peng, and Dan Roth. Improving Temporal Relation Extraction with a Globally Acquired Statistical Resource. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT, pages 841-851, 2018. URL: https://aclanthology.info/papers/N18-1077/n18-1077.
  75. Qiang Ning, Zhongzhi Yu, Chuchu Fan, and Dan Roth. Exploiting Partially Annotated Data for Temporal Relation Extraction. CoRR, abs/1804.08420, 2018. URL: http://arxiv.org/abs/1804.08420.
  76. Qiang Ning, Ben Zhou, Zhili Feng, Haoruo Peng, and Dan Roth. CogCompTime: A tool for understanding time in natural language. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP, pages 72-77, 2018. URL: https://aclanthology.info/papers/D18-2013/d18-2013.
  77. Hari Mohan Pandey, Ankit Chaudhary, and Deepti Mehrotra. Grammar induction using bit masking oriented genetic algorithm and comparative analysis. Applied Soft Computing, 38:453-468, 2016. URL: https://doi.org/10.1016/j.asoc.2015.09.044.
  78. Emanuele Pianta, Christian Girardi, and Roberto Zanoli. The TextPro Tool Suite. In Proceedings of the 6th International Conference on Language Resources and Evaluation, LREC, 2008. URL: http://www.lrec-conf.org/proceedings/lrec2008/summaries/645.html.
  79. Amir Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th Annual Symposium on Foundations of Computer Science, pages 46-57, 1977. URL: https://doi.org/10.1109/SFCS.1977.32.
  80. James Pustejovsky, José M. Castaño, Robert Ingria, Roser Saurí, Robert J. Gaizauskas, Andrea Setzer, Graham Katz, and Dragomir R. Radev. TimeML: Robust specification of event and temporal expressions in text. New Directions in Question Answering, pages 28-34, 2003. Google Scholar
  81. Aarne Ranta. Translating Between Language and Logic: What is Easy and What is Difficult. In Proceedings of the International Conference on Automated Deduction, pages 5-25. Springer, 2011. Google Scholar
  82. Nils Reimers, Nazanin Dehghani, and Iryna Gurevych. Temporal Anchoring of Events for the TimeBank Corpus. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL, 2016. URL: http://aclweb.org/anthology/P/P16/P16-1207.pdf.
  83. Tainã Santos, Gustavo Carvalho, and Augusto Sampaio. Formal Modelling of Environment Restrictions from Natural-Language Requirements. In Proceedings of the 21st Brazilian Symposium on Formal Methods: Foundations and Applications, SBMF, pages 252-270, 2018. URL: https://doi.org/10.1007/978-3-030-03044-5_16.
  84. Karin Kipper Schuler, Anna Korhonen, and Susan Windisch Brown. VerbNet overview, extensions, mappings and applications. In Proceedings of the Conference of the North American Chapter of the Association of Computational Linguistics on Human Language Technologies, pages 13-14, 2009. URL: http://www.aclweb.org/anthology/N09-4007.
  85. Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving Neural Machine Translation Models with Monolingual Data. CoRR, abs/1511.06709, 2015. URL: http://arxiv.org/abs/1511.06709.
  86. Bradford Starkie. Inferring Attribute Grammars with Structured Data for Natural Language Processing. In Proceedings of the 6th International Colloquium on Grammatical Inference: Algorithms and Applications, ICGI, pages 237-248, 2002. URL: https://doi.org/10.1007/3-540-45790-9_19.
  87. Mark Steedman. The syntactic process, volume 24. MIT press Cambridge, MA, 2000. Google Scholar
  88. Jannik Strötgen and Michael Gertz. HeidelTime: High quality rule-based extraction and normalization of temporal expressions. In Proceedings of the 5th International Workshop on Semantic Evaluation, pages 321-324, 2010. URL: http://aclweb.org/anthology/S/S10/S10-1071.pdf.
  89. Giancarlo Sturla. A two-phased approach for natural language parsing into formal logic. PhD thesis, Massachusetts Institute of Technology, 2017. Google Scholar
  90. Weiyi Sun, Anna Rumshisky, and Özlem Uzuner. Temporal reasoning over clinical text: the state of the art. Journal of the American Medical Informatics Association, 20(5):814-819, 2013. URL: https://doi.org/10.1136/amiajnl-2013-001760.
  91. Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning with Neural Networks. CoRR, abs/1409.3215, 2014. URL: http://arxiv.org/abs/1409.3215.
  92. Julien Tourille. Extracting Clinical Event Timelines: Temporal Information Extraction and Coreference Resolution in Electronic Health Records. (Création de Chronologies d'Événements Médicaux: Extraction d'Informations Temporelles et Résolution de la Coréférence dans les Dossiers Patients Électroniques). PhD thesis, University of Paris-Saclay, France, 2018. URL: https://tel.archives-ouvertes.fr/tel-01997223.
  93. Naushad UzZaman, Hector Llorens, James F. Allen, Leon Derczynski, Marc Verhagen, and James Pustejovsky. TempEval-3: Evaluating events, time expressions, and temporal relations. CoRR, abs/1206.5333, 2012. URL: http://arxiv.org/abs/1206.5333.
  94. SIddharth Vashishtha, Benjamin Van Durme, and Aaron Steven White. Fine-Grained Temporal Relation Extraction. CoRR, abs/1902.01390, 2019. URL: http://arxiv.org/abs/1902.01390.
  95. Yorick Wilks and Dann Fass. The preference semantics family. Computers & Mathematics with Applications, 23(2-5):205-221, 1992. Google Scholar
  96. Rongjie Yan, Chih-Hong Cheng, and Yesheng Chai. Formal consistency checking over specifications in natural languages. In Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition, DATE, pages 1677-1682, 2015. URL: http://dl.acm.org/citation.cfm?id=2757200.
  97. Sheng Zhang, Rachel Rudinger, and Benjamin Van Durme. An Evaluation of PredPatt and Open IE via Stage 1 Semantic Role Labeling. In Proceedings of the 12th International Conference on Computational Semantics, IWCS, 2017. URL: https://aclanthology.info/papers/W17-6944/w17-6944.
  98. Xiaoshi Zhong and Erik Cambria. Time Expression Recognition Using a Constituent-based Tagging Scheme. In Proceedings of the 2018 World Wide Web Conference on World Wide Web, WWW, pages 983-992, 2018. URL: https://doi.org/10.1145/3178876.3185997.
  99. Xiaoshi Zhong, Aixin Sun, and Erik Cambria. Time Expression Analysis and Recognition Using Syntactic Token Types and General Heuristic Rules. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ACL, pages 420-429, 2017. URL: https://doi.org/10.18653/v1/P17-1039.
  100. Lukáš Žilka. Temporal logic for man. Master’s thesis, Brno University of Technology, 2010. Google Scholar
  101. Szilvia Zvada and Tibor Gyimóthy. Using Decision Trees to Infer Semantic Functions of Attribute Grammars. Acta Cybernetica, 15(2):279-304, 2001. URL: http://www.inf.u-szeged.hu/actacybernetica/edb/vol15n2/Zvada_2001_ActaCybernetica.xml.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail