Discovering Predictive Dependencies on Multi-Temporal Relations

Authors Beatrice Amico , Carlo Combi , Romeo Rizzi , Pietro Sala



PDF
Thumbnail PDF

File

LIPIcs.TIME.2023.4.pdf
  • Filesize: 0.91 MB
  • 19 pages

Document Identifiers

Author Details

Beatrice Amico
  • Department of Computer Science, University of Verona, Italy
Carlo Combi
  • Department of Computer Science, University of Verona, Italy
Romeo Rizzi
  • Department of Computer Science, University of Verona, Italy
Pietro Sala
  • Department of Computer Science, University of Verona, Italy

Cite AsGet BibTex

Beatrice Amico, Carlo Combi, Romeo Rizzi, and Pietro Sala. Discovering Predictive Dependencies on Multi-Temporal Relations. In 30th International Symposium on Temporal Representation and Reasoning (TIME 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 278, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.TIME.2023.4

Abstract

In this paper, we propose a methodology for deriving a new kind of approximate temporal functional dependencies, called Approximate Predictive Functional Dependencies (APFDs), based on a three-window framework and on a multi-temporal relational model. Different features are proposed for the Observation Window (OW), where we observe predictive data, for the Waiting Window (WW), and for the Prediction Window (PW), where the predicted event occurs. We then discuss the concept of approximation for such APFDs, introduce two new error measures. We prove that the problem of deriving APFDs is intractable. Moreover, we discuss some preliminary results in deriving APFDs from real clinical data using MIMIC III dataset, related to patients from Intensive Care Units.

Subject Classification

ACM Subject Classification
  • Information systems → Relational database model
  • Information systems → Data mining
Keywords
  • temporal databases
  • temporal data mining
  • functional dependencies

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Ziawasch Abedjan, Cuneyt Gurcan Akcora, Mourad Ouzzani, Paolo Papotti, and Michael Stonebraker. Temporal rules discovery for web data cleaning. Proc. VLDB Endow., 9(4):336-347, 2015. URL: https://doi.org/10.14778/2856318.2856328.
  2. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley, 1995. URL: http://webdam.inria.fr/Alice/.
  3. Beatrice Amico and Carlo Combi. A 3-window framework for the discovery and interpretation of predictive temporal functional dependencies. In Martin Michalowski, Syed Sibte Raza Abidi, and Samina Abidi, editors, Artificial Intelligence in Medicine - 20th International Conference on Artificial Intelligence in Medicine, AIME 2022, Halifax, NS, Canada, June 14-17, 2022, Proceedings, volume 13263 of Lecture Notes in Computer Science, pages 299-309. Springer, 2022. URL: https://doi.org/10.1007/978-3-031-09342-5_29.
  4. Laure Berti-Équille, Hazar Harmouch, Felix Naumann, Noël Novelli, and Saravanan Thirumuruganathan. Discovery of genuine functional dependencies from relational data with missing values. Proc. VLDB Endow., 11(8):880-892, 2018. URL: https://doi.org/10.14778/3204028.3204032.
  5. Claudio Bettini, Sushil Jajodia, and Sean Wang. Time granularities in databases, data mining, and temporal reasoning. Springer Science & Business Media, 2000. Google Scholar
  6. Loredana Caruccio, Vincenzo Deufemia, Felix Naumann, and Giuseppe Polese. Discovering relaxed functional dependencies based on multi-attribute dominance. IEEE Trans. Knowl. Data Eng., 33(9):3212-3228, 2021. URL: https://doi.org/10.1109/TKDE.2020.2967722.
  7. Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. Relaxed functional dependencies - A survey of approaches. IEEE Trans. Knowl. Data Eng., 28(1):147-165, 2016. URL: https://doi.org/10.1109/TKDE.2015.2472010.
  8. Carlo Combi, Matteo Mantovani, Alberto Sabaini, Pietro Sala, Francesco Amaddeo, Ugo Moretti, and Giuseppe Pozzi. Mining approximate temporal functional dependencies with pure temporal grouping in clinical databases. Comput. Biol. Medicine, 62:306-324, 2015. URL: https://doi.org/10.1016/j.compbiomed.2014.08.004.
  9. Carlo Combi, Angelo Montanari, and Pietro Sala. A uniform framework for temporal functional dependencies with multiple granularities. In International Symposium on Spatial and Temporal Databases, pages 404-421. Springer, 2011. Google Scholar
  10. Carlo Combi and Pietro Sala. Mining approximate interval-based temporal dependencies. Acta Informatica, 53(6-8):547-585, 2016. URL: https://doi.org/10.1007/s00236-015-0246-x.
  11. Abdur Rahim Mohammad Forkan and Ibrahim Khalil. A clinical decision-making mechanism for context-aware and patient-specific remote monitoring systems using the correlations of multiple vital signs. Computer methods and programs in biomedicine, 139:1-16, 2017. URL: https://doi.org/10.1016/j.cmpb.2016.10.018.
  12. Chris Giannella and Edward Robertson. On approximation measures for functional dependencies. Inf. Syst., 29(6):483-507, August 2004. URL: https://doi.org/10.1016/j.is.2003.10.006.
  13. Yka Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. Tane: An efficient algorithm for discovering functional and approximate dependencies. The computer journal, 42(2):100-111, 1999. URL: https://doi.org/10.1093/comjnl/42.2.100.
  14. Christian S. Jensen and Richard T. Snodgrass. Valid time. In Ling Liu and M. Tamer Özsu, editors, Encyclopedia of Database Systems, Second Edition. Springer, 2018. URL: https://doi.org/10.1007/978-1-4614-8265-9_1066.
  15. Christian S Jensen, Richard T Snodgrass, and Michael D Soo. Extending existing dependency theory to temporal databases. IEEE Transactions on Knowledge and Data Engineering, 8(4):563-582, 1996. URL: https://doi.org/10.1109/69.536250.
  16. Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-Wei, Mengling Feng, Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii, a freely accessible critical care database. Scientific data, 3(1):1-9, 2016. URL: https://doi.org/10.1038/sdata.2016.35.
  17. Arif Khwaja. Kdigo clinical practice guidelines for acute kidney injury. Nephron Clinical Practice, 120(4):c179-c184, 2012. Google Scholar
  18. Jyrki Kivinen and Heikki Mannila. Approximate inference of functional dependencies from relations. Theor. Comput. Sci., 149(1):129-149, 1995. URL: https://doi.org/10.1016/0304-3975(95)00028-U.
  19. Sebastian Kruse and Felix Naumann. Efficient discovery of approximate dependencies. Proc. VLDB Endow., 11(7):759-772, 2018. URL: https://doi.org/10.14778/3192965.3192968.
  20. Ohbyung Kwon and Jae Mun Sim. Effects of data set features on the performances of classification algorithms. Expert Systems with Applications, 40(5):1847-1857, 2013. URL: https://doi.org/10.1016/j.eswa.2012.09.017.
  21. Marie Le Guilly, Jean-Marc Petit, and Vasile-Marian Scuturici. Evaluating classification feasibility using functional dependencies. In Transactions on Large-Scale Data-and Knowledge-Centered Systems XLIV, pages 132-159. Springer, 2020. URL: https://doi.org/10.1007/978-3-662-62271-1_5.
  22. Mirjana Mazuran, Elisa Quintarelli, Letizia Tanca, and Stefania Ugolini. Semi-automatic support for evolving functional dependencies. In Evaggelia Pitoura, Sofian Maabout, Georgia Koutrika, Amélie Marian, Letizia Tanca, Ioana Manolescu, and Kostas Stefanidis, editors, Proceedings of the 19th International Conference on Extending Database Technology, EDBT 2016, Bordeaux, France, March 15-16, 2016, Bordeaux, France, March 15-16, 2016, pages 293-304. OpenProceedings.org, 2016. URL: https://doi.org/10.5441/002/edbt.2016.28.
  23. Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and complexity classes. Journal of Computer and System Sciences, 43(3):425-440, 1991. URL: https://doi.org/10.1016/0022-0000(91)90023-X.
  24. Parivash Pirasteh, Slawomir Nowaczyk, Sepideh Pashami, Magnus Löwenadler, Klas Thunberg, Henrik Ydreskog, and Peter Berck. Interactive feature extraction for diagnostic trouble codes in predictive maintenance: A case study from automotive domain. In Proceedings of the Workshop on Interactive Data Mining, pages 1-10, 2019. URL: https://doi.org/10.1145/3304079.3310288.
  25. Pietro Sala, Carlo Combi, Matteo Mantovani, and Romeo Rizzi. Discovering evolving temporal information: Theory and application to clinical databases. SN Comput. Sci., 1(3):153, 2020. URL: https://doi.org/10.1007/s42979-020-00160-9.
  26. Philipp Schirmer, Thorsten Papenbrock, Sebastian Kruse, Felix Naumann, Dennis Hempfing, Torben Mayer, and Daniel Neuschäfer-Rube. Dynfd: Functional dependency discovery in dynamic datasets. In Melanie Herschel, Helena Galhardas, Berthold Reinwald, Irini Fundulaki, Carsten Binnig, and Zoi Kaoudi, editors, Advances in Database Technology - 22nd International Conference on Extending Database Technology, EDBT 2019, Lisbon, Portugal, March 26-29, 2019, pages 253-264. OpenProceedings.org, 2019. URL: https://doi.org/10.5441/002/edbt.2019.23.
  27. Robert W Schrier, Wei Wang, Brian Poole, Amit Mitra, et al. Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. The Journal of clinical investigation, 114(1):5-14, 2004. URL: https://doi.org/10.1172/JCI22353.
  28. Shigehiko Uchino, Rinaldo Bellomo, Donna Goldsmith, Samantha Bates, and Claudio Ronco. An assessment of the rifle criteria for acute renal failure in hospitalized patients. Critical care medicine, 34(7):1913-1917, 2006. URL: https://doi.org/10.1097/01.CCM.0000224227.70642.4F.
  29. Victor Vianu. Dynamic functional dependencies and database aging. Journal of the ACM (JACM), 34(1):28-59, 1987. URL: https://doi.org/10.1145/7531.7918.
  30. Jef Wijsen. Design of temporal relational databases based on dynamic and temporal functional dependencies. In James Clifford and Alexander Tuzhilin, editors, Recent Advances in Temporal Databases, Proceedings of the International Workshop on Temporal Databases, Zürich, Switzerland, 17-18 September 1995, Workshops in Computing, pages 61-76. Springer, 1995. URL: https://doi.org/10.1007/978-1-4471-3033-8_4.
  31. Jef Wijsen. Temporal fds on complex objects. ACM Trans. Database Syst., 24(1):127-176, 1999. URL: https://doi.org/10.1145/310701.310715.
  32. Jef Wijsen. Temporal Dependencies, pages 3955-3961. Springer, 2018. URL: https://doi.org/10.1007/978-1-4614-8265-9_396.
  33. Zhenxing Xu, Jingyuan Chou, Xi Sheryl Zhang, Yuan Luo, Tamara Isakova, Prakash Adekkanattu, Jessica S Ancker, Guoqian Jiang, Richard C Kiefer, Jennifer A Pacheco, et al. Identifying sub-phenotypes of acute kidney injury using structured and unstructured electronic health record data with memory networks. Journal of biomedical informatics, 102:103361, 2020. URL: https://doi.org/10.1016/j.jbi.2019.103361.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail