A Sound and Complete Tableau System for Fuzzy Halpern and Shoham’s Interval Temporal Logic

Authors Willem Conradie , Riccardo Monego , Emilio Muñoz-Velasco , Guido Sciavicco , Ionel Eduard Stan



PDF
Thumbnail PDF

File

LIPIcs.TIME.2023.9.pdf
  • Filesize: 0.73 MB
  • 14 pages

Document Identifiers

Author Details

Willem Conradie
  • School of Mathematics, University of the Witwatersrand, Johannisburg, South Africa
Riccardo Monego
  • Department of Mathematics and Computer Science, University of Ferrara, Italy
Emilio Muñoz-Velasco
  • Department of Applied Mathematics, University of Málaga, Spain
Guido Sciavicco
  • Department of Mathematics and Computer Science, University of Ferrara, Italy
Ionel Eduard Stan
  • Faculty of Engineering, Free University of Bozen-Bolzano, Italy

Cite AsGet BibTex

Willem Conradie, Riccardo Monego, Emilio Muñoz-Velasco, Guido Sciavicco, and Ionel Eduard Stan. A Sound and Complete Tableau System for Fuzzy Halpern and Shoham’s Interval Temporal Logic. In 30th International Symposium on Temporal Representation and Reasoning (TIME 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 278, pp. 9:1-9:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.TIME.2023.9

Abstract

Interval temporal logic plays a critical role in various applications, including planning, scheduling, and formal verification; recently, interval temporal logic has also been successfully applied to learning from temporal data. Halpern and Shoham’s interval temporal logic, in particular, stands out as a very intuitive, yet expressive, interval-based formalism. To address real-world scenarios involving uncertainty and imprecision, Halpern and Shoham’s logic has been recently generalized to the fuzzy (many-valued) case. The resulting language capitalizes on many-valued modal logics, allowing for a range of truth values that reflect multiple expert perspectives, but inherits the bad computational behaviour of its crisp counterpart. In this work, we investigate a sound and complete tableau system for fuzzy Halpern and Shoham’s logic, which, although possibly non-terminating, offers a semi-decision procedure for the finite case.

Subject Classification

ACM Subject Classification
  • Theory of computation → Theory and algorithms for application domains
Keywords
  • Interval temporal logic
  • many-valued logic
  • tableau system

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. L. Aceto, D. Della Monica, V. Goranko, A. Ingólfsdóttir, A. Montanari, and Guido Sciavicco. A complete classification of the expressiveness of interval logics of Allen’s relations: the general and the dense cases. Acta Informatica, 53(3):207-246, 2016. Google Scholar
  2. J. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11):832-843, 1983. Google Scholar
  3. D. Bresolin, D. Della Monica, A. Montanari, P. Sala, and G. Sciavicco. Interval temporal logics over strongly discrete linear orders: Expressiveness and complexity. Theoretical Computers Science, 560:269-291, 2014. Google Scholar
  4. D. Bresolin, D. Della Monica, A. Montanari, and G. Sciavicco. A tableau system for right propositional neighborhood logic over finite linear orders: An implementation. In Proc. of the 22th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX), volume 8123 of LNCS, pages 74-80. Springer, 2013. Google Scholar
  5. D. Bresolin, A. Kurucz, E. Muñoz-Velasco, V. Ryzhikov, G. Sciavicco, and M. Zakharyaschev. Horn fragments of the halpern-shoham interval temporal logic. ACM Transactions on Computional Logic, 18(3):22:1-22:39, 2017. Google Scholar
  6. A. Brunello, G. Sciavicco, and I. E. Stan. Interval Temporal Logic Decision Tree Learning. In Proceedings of the 16th European Conference on Logics in Artificial Intelligence (JELIA), volume 11468 of LNCS, pages 778-793. Springer, 2019. Google Scholar
  7. W. Conradie, D. Della Monica, E. Muñoz-Velasco, G. Sciavicco, and I. E. Stan. Fuzzy halpern and shoham’s interval temporal logics. Fuzzy Sets and Systems, 456:107-124, 2023. Google Scholar
  8. M. Fitting. Many-valued modal logics. Fundamenta Informaticae, 15(3-4):235-254, 1991. Google Scholar
  9. M. Fitting. Tableaus for many-valued modal logic. Studia Logica, 55(1):63-87, 1995. Google Scholar
  10. Nikolaos Galatos, Peter Jipsen, Tomasz Kowalski, and Hiroakira Ono. Residuated lattices: an algebraic glimpse at substructural logics. Elsevier, 2007. Google Scholar
  11. V. Goranko, A. Montanari, P. Sala, and G. Sciavicco. A general tableau method for propositional interval temporal logics: Theory and implementation. Journal of Applied Logics, 4(3):305-330, 2006. Google Scholar
  12. V. Goranko, A. Montanari, and G. Sciavicco. Propositional interval neighborhood temporal logics. Journal of Universal Computer Science, 9(9):1137-1167, 2003. Google Scholar
  13. V. Goranko, A. Montanari, and G. Sciavicco. A road map of interval temporal logics and duration calculi. J. of Applied Non-Classical Logics, 14(1-2):9-54, 2004. Google Scholar
  14. J. Y. Halpern and Y. Shoham. A Propositional Modal Logic of Time Intervals. Journal of the ACM, 38(4):935-962, 1991. Google Scholar
  15. F. Manzella, G. Pagliarini, G. Sciavicco, and I. E. Stan. Interval Temporal Random Forests with an Application to COVID-19 Diagnosis. In Proceedings of the 28th International Symposium on Temporal Representation and Reasoning (TIME), volume 206 of LIPIcs, pages 7:1-7:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. Google Scholar
  16. F. Manzella, G. Pagliarini, G. Sciavicco, and I. E. Stan. The voice of COVID-19: Breath and cough recording classification with temporal decision trees and random forests. Artificial Intelligence in Medicine, 137:102486, 2023. Google Scholar
  17. A. Montanari, G. Sciavicco, and N. Vitacolonna. Decidability of Interval Temporal Logics over Split-Frames via Granularity. In Proceedings of the 8th European Conference on Logics in Artificial Intelligence (JELIA), volume 2424 of LNCS, pages 259-270. Springer, 2002. Google Scholar
  18. E. Muñoz-Velasco, M. Pelegrín-Garcí, P. Sala, G. Sciavicco, and I. E. Stan. On coarser interval temporal logics. Artificial Intelligence, 266:1-26, 2019. Google Scholar
  19. G. Sciavicco and I. E. Stan. Knowledge extraction with interval temporal logic decision trees. In Proceedings of the 27th International Symposium on Temporal Representation and Reasoning (TIME), volume 178 of LIPIcs, pages 9:1-9:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. Google Scholar
  20. Y. Venema. A modal logic for chopping intervals. Journal of Logic and Computation, 1(4):453-476, 1991. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail