FastMinTC+: A Fast and Effective Heuristic for Minimum Timeline Cover on Temporal Networks

Authors Giorgio Lazzarinetti , Sara Manzoni , Italo Zoppis , Riccardo Dondi



PDF
Thumbnail PDF

File

LIPIcs.TIME.2024.20.pdf
  • Filesize: 0.75 MB
  • 18 pages

Document Identifiers

Author Details

Giorgio Lazzarinetti
  • Università degli Studi Milano-Bicocca, Milano, Italy
Sara Manzoni
  • Università degli Studi Milano-Bicocca, Milano, Italy
Italo Zoppis
  • Università degli Studi Milano-Bicocca, Milano, Italy
Riccardo Dondi
  • Università degli Studi di Bergamo, Bergamo, Italy

Cite AsGet BibTex

Giorgio Lazzarinetti, Sara Manzoni, Italo Zoppis, and Riccardo Dondi. FastMinTC+: A Fast and Effective Heuristic for Minimum Timeline Cover on Temporal Networks. In 31st International Symposium on Temporal Representation and Reasoning (TIME 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 318, pp. 20:1-20:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.TIME.2024.20

Abstract

The analysis and summarization of temporal networks are crucial for understanding complex interactions over time, yet pose significant computational challenges. This paper introduces FastMinTC+, an innovative heuristic approach designed to efficiently solve the Minimum Timeline Cover (MinTCover) problem in temporal networks. Our approach focuses on the optimization of activity timelines within temporal networks, aiming to provide both effective and computationally feasible solutions. By employing a low-complexity approach, FastMinTC+ adeptly handles massive temporal graphs, improving upon existing methods. Indeed, comparative evaluations on both synthetic and real-world datasets demonstrate that our algorithm outperforms established benchmarks with remarkable efficiency and accuracy. The results highlight the potential of heuristic approaches in the domain of temporal network analysis and open up new avenues for further research incorporating other computational techniques, for example deep learning, to enhance the adaptability and precision of such heuristics.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph algorithms
  • Theory of computation → Design and analysis of algorithms
  • Theory of computation → Mathematical optimization
  • Theory of computation → Discrete optimization
Keywords
  • Temporal Networks
  • Activity Timeline
  • Timeline Cover
  • Vertex Cover
  • Optimization
  • Heuristic

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial optimization with reinforcement learning. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings. OpenReview.net, 2017. URL: https://openreview.net/forum?id=Bk9mxlSFx.
  2. Shaowei Cai. Balance between complexity and quality: Local search for minimum vertex cover in massive graphs. In Qiang Yang and Michael J. Wooldridge, editors, Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages 747-753. AAAI Press, 2015. URL: http://ijcai.org/Abstract/15/111.
  3. Shaowei Cai, Kaile Su, Chuan Luo, and Abdul Sattar. Numvc: An efficient local search algorithm for minimum vertex cover. J. Artif. Intell. Res., 46:687-716, 2013. URL: https://doi.org/10.1613/JAIR.3907.
  4. Riccardo Dondi. Untangling temporal graphs of bounded degree. Theor. Comput. Sci., 969:114040, 2023. URL: https://doi.org/10.1016/J.TCS.2023.114040.
  5. Riccardo Dondi and Manuel Lafond. An FPT algorithm for temporal graph untangling. In Neeldhara Misra and Magnus Wahlström, editors, 18th International Symposium on Parameterized and Exact Computation, IPEC 2023, September 6-8, 2023, Amsterdam, The Netherlands, volume 285 of LIPIcs, pages 12:1-12:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.IPEC.2023.12.
  6. Riccardo Dondi and Alexandru Popa. Timeline cover in temporal graphs: Exact and approximation algorithms. In Sun-Yuan Hsieh, Ling-Ju Hung, and Chia-Wei Lee, editors, Combinatorial Algorithms - 34th International Workshop, IWOCA 2023, Tainan, Taiwan, June 7-10, 2023, Proceedings, volume 13889 of Lecture Notes in Computer Science, pages 173-184. Springer, 2023. URL: https://doi.org/10.1007/978-3-031-34347-6_15.
  7. Riccardo Dondi and Alexandru Popa. Exact and approximation algorithms for covering timeline in temporal graphs. Annals of Operations Research, April 2024. URL: https://doi.org/10.1007/s10479-024-05993-8.
  8. Vincent Froese, Pascal Kunz, and Philipp Zschoche. Disentangling the computational complexity of network untangling. CoRR, abs/2204.02668, 2022. URL: https://doi.org/10.48550/arXiv.2204.02668.
  9. Dorit S. Hochbaum. Approximation algorithms for the set covering and vertex cover problems. SIAM J. Comput., 11(3):555-556, 1982. URL: https://doi.org/10.1137/0211045.
  10. Petter Holme and Jari Saramäki. Temporal networks. CoRR, abs/1108.1780, 2011. URL: https://arxiv.org/abs/1108.1780.
  11. Yuriy Hulovatyy, Huili Chen, and Tijana Milenkovic. Exploring the structure and function of temporal networks with dynamic graphlets. Bioinform., 32(15):2402, 2016. URL: https://doi.org/10.1093/BIOINFORMATICS/BTW310.
  12. George Karakostas. A better approximation ratio for the vertex cover problem. ACM Trans. Algorithms, 5(4):41:1-41:8, 2009. URL: https://doi.org/10.1145/1597036.1597045.
  13. Elias B. Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial optimization algorithms over graphs. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 6348-6358, 2017. URL: https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html.
  14. Kenneth Langedal, Johannes Langguth, Fredrik Manne, and Daniel Thilo Schroeder. Efficient minimum weight vertex cover heuristics using graph neural networks. In Christian Schulz and Bora Uçar, editors, 20th International Symposium on Experimental Algorithms, SEA 2022, July 25-27, 2022, Heidelberg, Germany, volume 233 of LIPIcs, pages 12:1-12:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.SEA.2022.12.
  15. Giorgio Lazzarinetti, Riccardo Dondi, Sara Manzoni, and Italo Zoppis. An attention-based method for the minimum vertex cover problem on complex networks. Algorithms, 17(2):72, 2024. URL: https://doi.org/10.3390/A17020072.
  16. Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional networks and guided tree search. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 537-546, 2018. URL: https://proceedings.neurips.cc/paper/2018/hash/8d3bba7425e7c98c50f52ca1b52d3735-Abstract.html.
  17. Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. Graph summarization methods and applications: A survey. ACM Comput. Surv., 51(3):62:1-62:34, 2018. URL: https://doi.org/10.1145/3186727.
  18. Othon Michail. An introduction to temporal graphs: An algorithmic perspective. Internet Math., 12(4):239-280, 2016. URL: https://doi.org/10.1080/15427951.2016.1177801.
  19. Ashwin Paranjape, Austin R. Benson, and Jure Leskovec. Motifs in temporal networks. Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, 2016. URL: https://api.semanticscholar.org/CorpusID:13332080.
  20. Yun Peng, Byron Choi, and Jianliang Xu. Graph learning for combinatorial optimization: A survey of state-of-the-art. Data Sci. Eng., 6(2):119-141, 2021. URL: https://doi.org/10.1007/S41019-021-00155-3.
  21. Anna-Kaisa Pietilänen and Christophe Diot. Dissemination in opportunistic social networks: the role of temporal communities. In Proceedings of the Thirteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc '12, pages 165-174, New York, NY, USA, 2012. Association for Computing Machinery. URL: https://doi.org/10.1145/2248371.2248396.
  22. Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph analytics and visualization. In AAAI, 2015. URL: https://networkrepository.com.
  23. P. Rozenshtein. the-network-untangling-problem. https://github.com/polinapolina/the-network-untangling-problem/tree/master, 2020. [Online; accessed 13-June-2024].
  24. Polina Rozenshtein, Francesco Bonchi, Aristides Gionis, Mauro Sozio, and Nikolaj Tatti. Finding events in temporal networks: segmentation meets densest subgraph discovery. Knowl. Inf. Syst., 62(4):1611-1639, 2020. URL: https://doi.org/10.1007/S10115-019-01403-9.
  25. Polina Rozenshtein, Nikolaj Tatti, and Aristides Gionis. The network-untangling problem: from interactions to activity timelines. Data Min. Knowl. Discov., 35(1):213-247, 2021. URL: https://doi.org/10.1007/S10618-020-00717-5.
  26. Neil Shah, Danai Koutra, Tianmin Zou, Brian Gallagher, and Christos Faloutsos. Timecrunch: Interpretable dynamic graph summarization. In Longbing Cao, Chengqi Zhang, Thorsten Joachims, Geoffrey I. Webb, Dragos D. Margineantu, and Graham Williams, editors, Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, August 10-13, 2015, pages 1055-1064. ACM, 2015. URL: https://doi.org/10.1145/2783258.2783321.
  27. Bianca Wackersreuther, Peter Wackersreuther, Annahita Oswald, Christian Böhm, and Karsten M. Borgwardt. Frequent subgraph discovery in dynamic networks. In Ulf Brefeld, Lise Getoor, and Sofus A. Macskassy, editors, Proceedings of the Eighth Workshop on Mining and Learning with Graphs, MLG '10, Washington, D.C., USA, July 24-25, 2010, pages 155-162. ACM, 2010. URL: https://doi.org/10.1145/1830252.1830272.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail