Dequantizing Read-once Quantum Formulas

Authors Alessandro Cosentino, Robin Kothari, Adam Paetznick

Thumbnail PDF


  • Filesize: 0.5 MB
  • 13 pages

Document Identifiers

Author Details

Alessandro Cosentino
Robin Kothari
Adam Paetznick

Cite AsGet BibTex

Alessandro Cosentino, Robin Kothari, and Adam Paetznick. Dequantizing Read-once Quantum Formulas. In 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 22, pp. 80-92, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Quantum formulas, defined by Yao [FOCS'93], are the quantum analogs of classical formulas, i.e., classical circuits in which all gates have fanout one. We show that any read-once quantum formula over a gate set that contains all single-qubit gates is equivalent to a read-once classical formula of the same size and depth over an analogous classical gate set. For example, any read-once quantum formula over Toffoli and single-qubit gates is equivalent to a read-once classical formula over Toffoli and NOT gates. We then show that the equivalence does not hold if the read-once restriction is removed. To show the power of quantum formulas without the read-once restriction, we define a new model of computation called the one-qubit model and show that it can compute all boolean functions. This model may also be of independent interest.
  • formulas
  • dequantization
  • circuit complexity


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail