LIPIcs.WABI.2024.3.pdf
- Filesize: 0.87 MB
- 17 pages
The phylogenies of species and the genes they contain are similar but distinct, due to evolutionary events that affect genes but do not create new species. These events include gene duplication and loss, but also paralog exchange (non-allelic homologous recombination), where duplicate copies of a gene recombine. To account for paralog exchange, the evolutionary history of the genes must be represented in the form of a phylogenetic network. We reconstruct the interlinked evolution of the genes and species with reconciliations, which map the gene network into the species tree by explicitly accounting for these events. In previous work, we proposed the problem of reconciling a gene network and a species tree, but did not find an efficient solution for a general gene network. In this paper, we develop such a solution, and prove that it solves the most parsimonious reconciliation problem. Our algorithm is exponential only in the level of the gene network (with a base of 2), and we demonstrate that it is a practical solution through simulations. This allows, for the first time, a fine-grained study of the paralogy/orthology relationship between genes along their sequences.
Feedback for Dagstuhl Publishing