Modeling Subway Networks and Passenger Flows

Authors Antoine Thébault , Loïc Hélouët , Kenza Saiah



PDF
Thumbnail PDF

File

OASIcs.ATMOS.2024.16.pdf
  • Filesize: 2.22 MB
  • 20 pages

Document Identifiers

Author Details

Antoine Thébault
  • Univ. Rennes, IRISA, CNRS & INRIA, Rennes, France
  • Alstom Transport, Saint-Ouen, France
Loïc Hélouët
  • Univ. Rennes, IRISA, CNRS & INRIA, Rennes, France
Kenza Saiah
  • Alstom Transport, Saint-Ouen, France

Cite AsGet BibTex

Antoine Thébault, Loïc Hélouët, and Kenza Saiah. Modeling Subway Networks and Passenger Flows. In 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024). Open Access Series in Informatics (OASIcs), Volume 123, pp. 16:1-16:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/OASIcs.ATMOS.2024.16

Abstract

Simulation of urban rail networks provides useful information to optimize traffic management strategies w.r.t. goals such as satisfaction of passenger demands, adherence to schedules or energy saving. Many network models are too precise for the analysis needs, and do not exploit concurrency. This results in an explosion in the size of models, and long simulation times. This paper presents an extension of Petri nets that handles trajectories of trains, passenger flows, and scenarios for passenger arrivals. We then define a fast event-based simulation scheme. We test our model on a real case study, the Metro of Montreal, and show that full days of train operations with passengers can be simulated in a few seconds, allowing analysis of quantitative properties.

Subject Classification

ACM Subject Classification
  • Computing methodologies → Modeling and simulation
Keywords
  • Subways
  • Passenger Flows
  • Modelization
  • Petri-Nets
  • Trajectory-Nets

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Y. Ahn, T. Kowada, H. Tsukaguchi, and U. Vandebona. Estimation of passenger flow for planning and management of railway stations. Transportation Research Procedia, 25:315-330, 2017. World Conference on Transport Research - WCTR 2016 Shanghai. 10-15 July 2016. URL: https://doi.org/10.1016/j.trpro.2017.05.408.
  2. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183-235, 1994. Google Scholar
  3. N. Bertrand, B. Bordais, L. Hélouët, T. Mari, J. Parreaux, and O. Sankur. Performance evaluation of metro regulations using probabilistic model-checking. In Proc. of RSSRail 2019, volume 11495 of Lecture Notes in Computer Science, pages 59-76, 2019. Google Scholar
  4. C.G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems, Third Edition. Springer New York, 2021. URL: https://doi.org/10.1007/978-0-387-68612-7.
  5. T. H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press, 2nd edition, 2001. Google Scholar
  6. Société des Transports de Montréal. GTFS Static Overview. https://www.stm.info/sites/default/files/media/Stminfo/images/plan-metro-blanc.pdf, 2024.
  7. Rail Management Consultants International GmbH. Railsys suite. URL: https://www.rmcon-int.de/home-en/.
  8. Google. GTFS Static Overview. https://developers.google.com/transit/gtfs, 2022.
  9. S. Guanghui, S. Bingfeng, Z. Kun, Z. Ben, and Z. Xuanchuan. Simulation-based method for the calculation of passenger flow distribution in an urban rail transit network under interruption. Urban Rail Transit, 9:110-126, 2023. URL: https://doi.org/10.1007/s40864-023-00188-z.
  10. R. Haehn. Optimisation and Analysis of Railway Timetables under Consideration of Uncertainties. PhD thesis, Aachen University, 2022. Google Scholar
  11. R. Haehn, E. Ábrahám, and N. Kotowski. Acceleration techniques for symbolic simulation of railway timetables. In Proc. of RSSRail'22, volume 13294 of Lecture Notes in Computer Science, pages 46-62, 2022. Google Scholar
  12. N. Harris. Train boarding and alighting rates at high passenger loads. Journal of Advanced Transportation, 40:249-263, June 2006. URL: https://doi.org/10.1002/atr.5670400302.
  13. L. Hélouët and P. Agrawal. Waiting nets. In Proc. of PETRI NETS'22, volume 13288 of Lecture Notes in Computer Science, pages 67-89. Springer, 2022. Google Scholar
  14. L. Hélouët and A. Thébault. Mochy: A tool for the modeling of concurrent hybrid systems. In Application and Theory of Petri Nets and Concurrency, pages 205-216, 2023. Google Scholar
  15. K. Kecir. Performance evaluation of urban rail traffic management techniques. PhD thesis, Universite de Rennes 1, 2019. Google Scholar
  16. N. Luangboriboon, S. Seriani, and T. Fujiyama. The influence of the density inside a train carriage on passenger boarding rate. International Journal of Rail Transportation, 9(5):445-460, 2021. Google Scholar
  17. E.W. Mayr. An algorithm for the general petri net reachability problem. SIAM Journal on Computing, 13(3):441-460, 1984. Google Scholar
  18. P. M. Merlin. A Study of the Recoverability of Computing Systems. PhD thesis, University of California, Irvine, CA, USA, 1974. Google Scholar
  19. G. Michal, N. Huynh, N. Shukla, A. Munoz, and J. Barthelemy. Railnet: A simulation model for operational planning of rail freight. Transportation Research Procedia, 25:461-473, 2017. World Conference on Transport Research - WCTR 2016 Shanghai. 10-15 July 2016. URL: https://doi.org/10.1016/j.trpro.2017.05.426.
  20. A. Nash and D. Huerlimann. Railroad simulation using OpenTrack. In Computers in Railways IX, pages 45-54, 2004. Google Scholar
  21. A. Seyfried, T. Rupprecht, O. Passon, B. Steffen, W. Klingsch, and M. Boltes. New insights into pedestrian flow through bottlenecks. Transportation Science, 43:395-406, March 2007. URL: https://doi.org/10.1287/trsc.1090.0263.
  22. STM. STM Developers section. https://www.stm.info/en/about/developers, 2023.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail