OASIcs.ATMOS.2024.16.pdf
- Filesize: 2.22 MB
- 20 pages
Simulation of urban rail networks provides useful information to optimize traffic management strategies w.r.t. goals such as satisfaction of passenger demands, adherence to schedules or energy saving. Many network models are too precise for the analysis needs, and do not exploit concurrency. This results in an explosion in the size of models, and long simulation times. This paper presents an extension of Petri nets that handles trajectories of trains, passenger flows, and scenarios for passenger arrivals. We then define a fast event-based simulation scheme. We test our model on a real case study, the Metro of Montreal, and show that full days of train operations with passengers can be simulated in a few seconds, allowing analysis of quantitative properties.
Feedback for Dagstuhl Publishing