Computing User Equilibria for Schedule-Based Transit Networks with Hard Vehicle Capacities

Authors Tobias Harks , Sven Jäger , Michael Markl , Philine Schiewe



PDF
Thumbnail PDF

File

OASIcs.ATMOS.2024.17.pdf
  • Filesize: 0.92 MB
  • 17 pages

Document Identifiers

Author Details

Tobias Harks
  • University of Passau, Germany
Sven Jäger
  • RPTU Kaiserslautern-Landau, Germany
Michael Markl
  • University of Passau, Germany
Philine Schiewe
  • Aalto University, Finland

Acknowledgements

We thank the anonymous reviewers for their constructive feedback.

Cite AsGet BibTex

Tobias Harks, Sven Jäger, Michael Markl, and Philine Schiewe. Computing User Equilibria for Schedule-Based Transit Networks with Hard Vehicle Capacities. In 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024). Open Access Series in Informatics (OASIcs), Volume 123, pp. 17:1-17:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/OASIcs.ATMOS.2024.17

Abstract

Modelling passenger assignments in public transport networks is a fundamental task for city planners, especially when deliberating network infrastructure decisions. A key aspect of a realistic model for passenger assignments is to integrate selfish routing behaviour of passengers on the one hand, and the limited vehicle capacities on the other hand. We formulate a side-constrained user equilibrium model in a schedule-based time-expanded transit network, where passengers are modelled via a continuum of non-atomic agents that want to travel with a fixed start time from a user-specific origin to a destination. An agent’s route may comprise several rides along given lines, each using vehicles with hard loading capacities. We give a characterization of (side-constrained) user equilibria via a quasi-variational inequality and prove their existence by generalizing a well-known existence result of Bernstein and Smith (Transp. Sci., 1994). We further derive a polynomial time algorithm for single-commodity instances and an exact finite time algorithm for the multi-commodity case. Based on our quasi-variational characterization, we finally devise a fast heuristic computing user equilibria, which is tested on real-world instances based on data gained from the Hamburg S-Bahn system and the Swiss long-distance train network. It turns out that w.r.t. the total travel time, the computed user-equilibria are quite efficient compared to a system optimum, which neglects equilibrium constraints and only minimizes total travel time.

Subject Classification

ACM Subject Classification
  • Theory of computation → Network games
  • Applied computing → Transportation
  • Theory of computation → Exact and approximate computation of equilibria
Keywords
  • traffic assignment
  • side-constrained equilibrium
  • public transportation

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Arbalete. Liniennetzplan der S-Bahn Hamburg, 2016. Licensed under CC BY-SA 4.0. Accessed 19-Dec-2023. URL: https://commons.wikimedia.org/wiki/File:Karte_der_S-Bahn_Hamburg.svg.
  2. David Bernstein and Tony E. Smith. Equilibria for networks with lower semicontinuous costs: With an application to congestion pricing. Transp. Sci., 28(3):221-235, August 1994. URL: https://doi.org/10.1287/trsc.28.3.221.
  3. Belgacem Bouzaïene-Ayari, Michel Gendreau, and Sang Nguyen. Passenger assignment in congested transit networks: A historical perspective. In Patrice Marcotte and Sang Nguyen, editors, Equilibrium and Advanced Transportation Modelling, pages 47-71. Springer, Boston, MA, 1998. URL: https://doi.org/10.1007/978-1-4615-5757-9_3.
  4. Paolo Carraresi, Federico Malucelli, and Stefano Pallottino. Regional mass transit assignment with resource constraints. Transp. Res. B: Methodol., 30(2):81-98, April 1996. URL: https://doi.org/10.1016/0191-2615(95)00027-5.
  5. M. Cepeda, R. Cominetti, and M. Florian. A frequency-based assignment model for congested transit networks with strict capacity constraints: characterization and computation of equilibria. Transp. Res. B: Methodol., 40(6):437-459, July 2006. URL: https://doi.org/10.1016/j.trb.2005.05.006.
  6. Roberto Cominetti and José R. Correa. Common-lines and passenger assignment in congested transit networks. Transp. Sci., 35(3):250-267, 2001. URL: https://doi.org/10.1287/trsc.35.3.250.10154.
  7. José R. Correa, Andreas S. Schulz, and Nicolás E. Stier-Moses. Selfish routing in capacitated networks. Math. Oper. Res., 29(4):961-976, November 2004. URL: https://doi.org/10.1287/moor.1040.0098.
  8. José R. Correa and Nicolás E. Stier-Moses. Wardrop equilibria. In James J. Cochran, Louis A. Cox, Jr, Pinar Keskinocak, Jeffrey P. Kharoufeh, and J. Cole Smith, editors, Wiley Encyclopedia of Operations Research and Management Science. John Wiley & Sons, Ltd, 2011. URL: https://doi.org/10.1002/9780470400531.eorms0962.
  9. Umberto Crisalli. Dynamic transit assignment algorithms for urban congested networks. WIT Trans. Built Environ., 44, 1999. URL: https://www.witpress.com/elibrary/wit-transactions-on-the-built-environment/44/5985.
  10. Stella C. Dafermos and Frederick T. Sparrow. The traffic assignment problem for a general network. J. Res. Natl. Inst. Stand., 73B(2):91-118, April 1969. URL: https://doi.org/10.6028/jres.073B.010.
  11. Joaquín de Cea and Enrique Fernández. Transit assignment for congested public transport systems: An equilibrium model. Transp. Sci., 27(2):133-147, 1993. URL: https://doi.org/10.1287/trsc.27.2.133.
  12. Qian Fu, Ronghui Liu, and Stephane Hess. A review on transit assignment modelling approaches to congested networks: a new perspective. Procedia Soc. Behav. Sci., 54:1145-1155, October 2012. URL: https://doi.org/10.1016/j.sbspro.2012.09.829.
  13. Guido Gentile, Michael Florian, Younes Hamdouch, Oded Cats, and Agostino Nuzzolo. The theory of transit assignment: Basic modelling frameworks. In Guido Gentile and Klaus Noekel, editors, Modelling Public Transport Passenger Flows in the Era of Intelligent Transport Systems, STTT, pages 287-386. Springer, Cham, 2016. URL: https://doi.org/10.1007/978-3-319-25082-3_6.
  14. Lukas Graf and Tobias Harks. Side-constrained dynamic traffic equilibria. In Kevin Leyton-Brown, Jason D. Hartline, and Larry Samuelson, editors, Proceedings of the 24th ACM Conference on Economics and Computation, page 814. ACM, 2023. URL: https://doi.org/10.1145/3580507.3597801.
  15. Younes Hamdouch, H.W. Ho, Agachai Sumalee, and Guodong Wang. Schedule-based transit assignment model with vehicle capacity and seat availability. Transp. Res. B: Methodol., 45(10):1805-1830, December 2011. URL: https://doi.org/10.1016/j.trb.2011.07.010.
  16. Younes Hamdouch and Siriphong Lawphongpanich. Schedule-based transit assignment model with travel strategies and capacity constraints. Transp. Res. B: Methodol., 42(7-8):663-684, August 2008. URL: https://doi.org/10.1016/j.trb.2007.11.005.
  17. Younes Hamdouch, Patrice Marcotte, and Sang Nguyen. Capacitated transit assignment with loading priorities. Math. Program., 101(1):205-230, 2004. URL: https://doi.org/10.1007/s10107-004-0542-7.
  18. Younes Hamdouch, W. Y. Szeto, and Y. Jiang. A new schedule-based transit assignment model with travel strategies and supply uncertainties. Transp. Res. B: Methodol., 67:35-67, September 2014. URL: https://doi.org/10.1016/j.trb.2014.05.002.
  19. Tobias Harks, Sven Jäger, Michael Markl, and Philine Schiewe. Computing user equilibria for schedule-based transit networks with hard vehicle capacities, 2024. URL: https://doi.org/10.48550/arXiv.2406.17153.
  20. Tobias Harks, Sven Jäger, Michael Markl, and Philine Schiewe. A heuristic for computing user equilibria in schedule-based transit networks with hard capacity constraints, 2024. Software, swhId: https://archive.softwareheritage.org/swh:1:dir:a3e48de8912d81166b2517c3c826e11bcda2c356;origin=https://github.com/ArbeitsgruppeTobiasHarks/sbta;visit=swh:1:snp:a8156534f8d9628421643ce05fd4d718be6f664b;anchor=swh:1:rev:259e6b50706c24493b620f8b6a22801d0c01d25a (visited on 2024-08-20). URL: https://github.com/ArbeitsgruppeTobiasHarks/sbta/tree/atmos.
  21. Tobias Harks, Ingo Kleinert, Max Klimm, and Rolf H. Möhring. Computing network tolls with support constraints. Networks, 65(3):262-285, March 2015. URL: https://doi.org/10.1002/net.21604.
  22. Olaf Jahn, Rolf H. Möhring, Andreas S. Schulz, and Nicolás E. Stier-Moses. System-optimal routing of traffic flows with user constraints in networks with congestion. Oper. Res., 53(4):600-616, August 2005. URL: https://doi.org/10.1287/opre.1040.0197.
  23. Fumitaka Kurauchi, Michael G. H. Bell, and Jan-Dirk Schmöcker. Capacity constrained transit assignment with common lines. J. Math. Model. Algorithms, 2(4):309-327, December 2003. URL: https://doi.org/10.1023/b:jmma.0000020426.22501.c1.
  24. Homero Larrain, Hemant K. Suman, and Juan Carlos Muñoz. Route based equilibrium assignment in congested transit networks. Transp. Res. C: Emerg. Technol., 127:103125, June 2021. URL: https://doi.org/10.1016/j.trc.2021.103125.
  25. Torbjörn Larsson and Michael Patriksson. An augmented lagrangean dual algorithm for link capacity side constrained traffic assignment problems. Transp. Res. B: Methodol., 29(6):433-455, December 1995. URL: https://doi.org/10.1016/0191-2615(95)00016-7.
  26. Patrice Marcotte and Sang Nguyen. Hyperpath formulations of traffic assignment problems. In Patrice Marcotte and Sang Nguyen, editors, Equilibrium and Advanced Transportation Modelling, pages 175-200. Springer, Boston, MA, 1998. URL: https://doi.org/10.1007/978-1-4615-5757-9_9.
  27. Patrice Marcotte, Sang Nguyen, and Alexandre Schoeb. A strategic flow model of traffic assignment in static capacitated networks. Oper. Res., 52(2):191-212, April 2004. URL: https://doi.org/10.1287/opre.1030.0091.
  28. Sang Nguyen, Stefano Pallottino, and Federico Malucelli. A modeling framework for passenger assignment on a transport network with timetables. Transp. Sci., 35(3):238-249, August 2001. URL: https://doi.org/10.1287/trsc.35.3.238.10152.
  29. Agostino Nuzzolo and Francesco Russo. Stochastic assignment models for transit low frequency services: Some theoretical and operative aspects. In Lucio Bianco and Paolo Toth, editors, Advanced Methods in Transportation Analysis, Transportation Analysis, pages 321-339. Springer, 1996. URL: https://doi.org/10.1007/978-3-642-85256-5_14.
  30. Agostino Nuzzolo, Francesco Russo, and Umberto Crisalli. A doubly dynamic schedule-based assignment model for transit networks. Transp. Sci., 35(3):268-285, August 2001. URL: https://doi.org/10.1287/trsc.35.3.268.10149.
  31. Natale Papola, Francesco Filippi, Guido Gentile, and Lorenzo Meschini. Schedule-based transit assignment: new dynamic equilibrium model with vehicle capacity constraints. In Agostino Nuzzolo and Nigel H. M. Wilson, editors, Schedule-Based Modeling of Transportation Networks, volume 46 of ORCS, pages 1-26. Springer, 2009. URL: https://doi.org/10.1007/978-0-387-84812-9_8.
  32. Michael Patriksson. The traffic assignment problem: models and methods. VSP, Utrecht, 1994. Google Scholar
  33. Normen Rochau, Klaus Nökel, and Michael G. H. Bell. Cost functions for strategies in schedule-based transit networks with limited vehicle capacities. Transp. Res. Rec., 2284(1):62-69, January 2012. URL: https://doi.org/10.3141/2284-08.
  34. S-Bahn Hamburg GmbH. Zahlen, Daten, Fakten rund um die S-Bahn Hamburg, 2023. URL: https://www.s-bahn-hamburg.de/service/schulklassen/daten-zahlen-fakten.
  35. Philine Schiewe, Marc Goerigk, and Niels Lindner. Introducing TimPassLib - A library for integrated periodic timetabling and passenger routing. Oper. Res. Forum, 4, August 2023. URL: https://doi.org/10.1007/S43069-023-00244-1.
  36. Mike J. Smith. The existence, uniqueness and stability of traffic equilibria. Transp. Res. B: Methodol., 13(4):295-304, December 1979. URL: https://doi.org/10.1016/0191-2615(79)90022-5.
  37. Mike J. Smith. Two alternative definitions of traffic equilibrium. Transp. Res. B: Methodol., 18(1):63-65, February 1984. URL: https://doi.org/10.1016/0191-2615(84)90006-7.
  38. Heinz Spiess and Michael Florian. Optimal strategies: A new assignment model for transit networks. Transp. Res. B: Methodol., 23(2):83-102, April 1989. URL: https://doi.org/10.1016/0191-2615(89)90034-9.
  39. John Glen Wardrop. Some theoretical aspects of road traffic research. Proc. Inst. Civ. Eng., 1(3):325-378, May 1952. Google Scholar
  40. Jia Hao Wu, Michael Florian, and Patrice Marcotte. Transit equilibrium assignment: A model and solution algorithms. Transp. Sci., 28(3):193-203, August 1994. URL: https://doi.org/10.1287/trsc.28.3.193.
  41. Z. X. Wu and William H. K. Lam. Network equilibrium for congested multi-mode networks with elastic demand. J. Adv. Transp., 37(3):295-318, 2003. URL: https://doi.org/10.1002/atr.5670370304.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail