Periodic Event Scheduling with Flexible Infrastructure Assignment

Authors Enrico Bortoletto , Rolf Nelson van Lieshout , Berenike Masing , Niels Lindner



PDF
Thumbnail PDF

File

OASIcs.ATMOS.2024.4.pdf
  • Filesize: 0.67 MB
  • 18 pages

Document Identifiers

Author Details

Enrico Bortoletto
  • Zuse Institute Berlin, Germany
Rolf Nelson van Lieshout
  • Eindhoven University of Technology, The Netherlands
Berenike Masing
  • Zuse Institute Berlin, Germany
Niels Lindner
  • Zuse Institute Berlin, Germany

Acknowledgements

We thank DB InfraGO AG for providing data for the S-Bahn Berlin network.

Cite AsGet BibTex

Enrico Bortoletto, Rolf Nelson van Lieshout, Berenike Masing, and Niels Lindner. Periodic Event Scheduling with Flexible Infrastructure Assignment. In 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024). Open Access Series in Informatics (OASIcs), Volume 123, pp. 4:1-4:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/OASIcs.ATMOS.2024.4

Abstract

We present novel extensions of the Periodic Event Scheduling Problem (PESP) that integrate the assignment of activities to infrastructure elements. An application of this is railway timetabling, as station and platform capacities are limited and need to be taken into account. We show that an assignment of activities to platforms can always be made periodic, and that it can be beneficial to allow larger periods for the assignment than for the timetable. We present mixed-integer programming formulations for the general problem, as well as for the practically relevant case when multiple platforms can be considered equivalent, for which we present a bipartite matching approach. We finally test and compare these models on real-world instances.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Integer programming
  • Applied computing → Transportation
  • Mathematics of computing → Combinatorial optimization
  • Mathematics of computing → Matchings and factors
Keywords
  • Periodic Event Scheduling
  • Periodic Timetabling
  • Railway Timetabling
  • Matchings
  • Infrastructure Assignments
  • Platform Assignments
  • Station Capacities

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. E. Bortoletto, N. Lindner, and B. Masing. Tropical Neighbourhood Search: A New Heuristic for Periodic Timetabling. In M. D'Emidio and N. Lindner, editors, 22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2022), volume 106 of Open Access Series in Informatics (OASIcs), pages 3:1-3:19, Dagstuhl, Germany, 2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/OASIcs.ATMOS.2022.3.
  2. E. Bortoletto, N. Lindner, and B. Masing. Periodic Timetabling with Cyclic Order Constraints. In D. Frigioni and P. Schiewe, editors, 23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023), volume 115 of Open Access Series in Informatics (OASIcs), pages 7:1-7:18, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/OASIcs.ATMOS.2023.7.
  3. G. Caimi, L. Kroon, and C. Liebchen. Models for railway timetable optimization: Applicability and applications in practice. Journal of Rail Transport Planning & Management, 6(4):285-312, 2017. URL: https://doi.org/10.1016/j.jrtpm.2016.11.002.
  4. D. Frigioni and P. Schiewe, editors. OASIcs, Volume 115, ATMOS 2023, Complete Volume, volume 115 of Open Access Series in Informatics (OASIcs), Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/OASIcs.ATMOS.2023.
  5. F. Fuchs, A. Trivella, and F. Corman. Enhancing the interaction of railway timetabling and line planning with infrastructure awareness. Transportation Research Part C: Emerging Technologies, 142:103805, September 2022. URL: https://doi.org/10.1016/j.trc.2022.103805.
  6. J. Korst, E. Aarts, J. K. Lenstra, and J. Wessels. Periodic multiprocessor scheduling. In E. H. L. Aarts, J. van Leeuwen, and M. Rem, editors, Parle '91 Parallel Architectures and Languages Europe, pages 166-178, Berlin, Heidelberg, 1991. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/978-3-662-25209-3_12.
  7. C. Liebchen. Periodic timetable optimization in public transport. In K.-H. Waldmann and U. M. Stocker, editors, Operations Research Proceedings 2006, pages 29-36, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/978-3-540-69995-8_5.
  8. C. Liebchen and R. H. Möhring. The Modeling Power of the Periodic Event Scheduling Problem: Railway Timetables — and Beyond. In F. Geraets, L. Kroon, A. Schoebel, D. Wagner, and C. D. Zaroliagis, editors, Algorithmic Methods for Railway Optimization, Lecture Notes in Computer Science, pages 3-40, Berlin, Heidelberg, 2007. Springer. URL: https://doi.org/10.1007/978-3-540-74247-0_1.
  9. N. Lindner and B. Masing. On the Split Closure of the Periodic Timetabling Polytope, 2023. URL: https://doi.org/10.48550/arXiv.2306.02746.
  10. B. Masing, N. Lindner, and C. Liebchen. Integrating Line Planning for Construction Sites into Periodic Timetabling via Track Choice. In D. Frigioni and P. Schiewe, editors, 23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023), volume 115 of Open Access Series in Informatics (OASIcs), pages 5:1-5:15, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/OASIcs.ATMOS.2023.5.
  11. B. Masing, N. Lindner, and C. Liebchen. Periodic timetabling with integrated track choice for railway construction sites. Journal of Rail Transport Planning & Management, 28:100416, 2023. URL: https://doi.org/10.1016/j.jrtpm.2023.100416.
  12. K. Nachtigall. Periodic Network Optimization and Fixed Interval Timetables. Habilitation Thesis, Universität Hildesheim, 1998. Google Scholar
  13. K. Nachtigall and J. Opitz. Solving Periodic Timetable Optimisation Problems by Modulo Simplex Calculations. In M. Fischetti and P. Widmayer, editors, 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS'08), volume 9 of OpenAccess Series in Informatics (OASIcs), Dagstuhl, Germany, 2008. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/OASIcs.ATMOS.2008.1588.
  14. A. Hickford S. Blainey and J. Preston. Barriers to passenger rail use: A review of the evidence. Transport Reviews, 32(6):675-696, 2012. URL: https://doi.org/10.1080/01441647.2012.743489.
  15. P. Schiewe and A. Schöbel. Periodic Timetabling with Integrated Routing: Toward Applicable Approaches. Transportation Science, 54(6):1714-1731, 2020. Publisher: INFORMS. URL: https://doi.org/10.1287/trsc.2019.0965.
  16. P. Serafini and W. Ukovich. A mathematical model for periodic scheduling problems. SIAM J. on Discret. Math., 2(4):550-581, 1989. URL: https://doi.org/10.1137/0402049.
  17. R. N. Van Lieshout. Integrated periodic timetabling and vehicle circulation scheduling. Transportation Science, 55(3):768-790, 2021. URL: https://doi.org/10.1287/trsc.2020.1024.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail