Faster Diagnosis with Answer Set Programming (Short Paper)

Authors Liliana Marie Prikler , Franz Wotawa



PDF
Thumbnail PDF

File

OASIcs.DX.2024.24.pdf
  • Filesize: 0.68 MB
  • 13 pages

Document Identifiers

Author Details

Liliana Marie Prikler
  • Institute of Software Technology, Graz University of Technology, Austria
Franz Wotawa
  • Institute of Software Technology, Graz University of Technology, Austria

Cite As Get BibTex

Liliana Marie Prikler and Franz Wotawa. Faster Diagnosis with Answer Set Programming (Short Paper). In 35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024). Open Access Series in Informatics (OASIcs), Volume 125, pp. 24:1-24:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/OASIcs.DX.2024.24

Abstract

From hardware to software to human patients, diagnosis has been one of the first areas of interest in artificial intelligence, and has remained a relevant topic since. Recent research in model-based diagnosis has shown that answer set programming not only allows for an easy expression of diagnosis problems, but also efficient solving. In this paper, we improve on previous results by making use of various modern answer set programming techniques. Our experiments compare multi-shot solving, heuristics and preferences, with results indicating that heuristics provide the fastest solutions on most instances we studied.

Subject Classification

ACM Subject Classification
  • Computing methodologies → Logic programming and answer set programming
  • Computing methodologies → Causal reasoning and diagnostics
Keywords
  • Answer set programming
  • model-based diagnosis
  • performance comparison

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Moritz Bayerkuhnlein and Diedrich Wolter. Model-based diagnosis with ASP for non-groundable domains. In Arne Meier and Magdalena Ortiz, editors, Foundations of Information and Knowledge Systems, pages 363-380, Cham, 2024. Springer Nature Switzerland. URL: https://doi.org/10.1007/978-3-031-56940-1_20.
  2. Gerhard Brewka, James Delgrande, Javier Romero, and Torsten Schaub. A general framework for preferences in answer set programming. Artificial Intelligence, 325:104023, 2023. URL: https://doi.org/10.1016/j.artint.2023.104023.
  3. Gerhard Brewka, James P. Delgrande, Javier Romero, and Torsten Schaub. asprin: Customizing answer set preferences without a headache. In AAAI, pages 1467-1474. AAAI Press, 2015. URL: https://doi.org/10.1609/AAAI.V29I1.9398.
  4. Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński. Answer set programming at a glance. Communications of the ACM, 54(12):92-103, December 2011. URL: https://doi.org/10.1145/2043174.2043195.
  5. Franc Brglez and Hideo Fujiwara. A neutral netlist of 10 combinational benchmark circuits and a target simulator in fortran. In Proceedings of the 1985 International Symposium on Circuits and Systems (ISCAS'85), pages 695-698, June 1985. Special Session on ATPG and Fault Simulation. Google Scholar
  6. Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista Ianni, Roland Kaminski, Thomas Krennwallner, Nicola Leone, Marco Maratea, Francesco Ricca, and Torsten Schaub. Asp-core-2 input language format. Theory and Practice of Logic Programming, 20(2):294-309, 2020. URL: https://doi.org/10.1017/S1471068419000450.
  7. Johan de Kleer and Brian C. Williams. Diagnosing multiple faults. Artificial Intelligence, 32(1):97-130, 1987. URL: https://doi.org/10.1016/0004-3702(87)90063-4.
  8. Martin Gebser, Amelia Harrison, Roland Kaminski, Vladimir Lifschitz, and Torsten Schaub. Abstract Gringo. Theory and Practice of Logic Programming, 15(4-5):449-463, 2015. URL: https://doi.org/10.1017/S1471068415000150.
  9. Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Multi-shot ASP solving with clingo. Theory and Practice of Logic Programming, 19(1):27-82, 2019. URL: https://doi.org/10.1017/S1471068418000054.
  10. Martin Gebser, Benjamin Kaufmann, Javier Romero, Ramón Otero, Torsten Schaub, and Philipp Wanko. Domain-specific heuristics in answer set programming. In Marie desJardins and Michael L. Littman, editors, Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, July 14-18, 2013, Bellevue, Washington, USA, pages 350-356. AAAI Press, 2013. URL: https://doi.org/10.1609/AAAI.V27I1.8585.
  11. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming. In Robert A. Kowalski and Kenneth A. Bowen, editors, Logic Programming, Proceedings of the Fifth International Conference and Symposium, Seattle, Washington, USA, August 15-19, 1988 (2 Volumes), pages 1070-1080. MIT Press, 1988. Google Scholar
  12. Russell Greiner, Barbara A. Smith, and Ralph W. Wilkerson. A correction to the algorithm in reiter’s theory of diagnosis. Artificial Intelligence, 41(1):79-88, 1989. URL: https://doi.org/10.1016/0004-3702(89)90079-9.
  13. Jacques Herbrand. Recherches sur la théorie de la démonstration. Doctoral thesis, Faculté des sciences de Paris, 1930. Google Scholar
  14. Vladimir Lifschitz. Answer Set Programming. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-24658-7.
  15. João Marques-Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning SAT solvers. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability - Second Edition, volume 336 of Frontiers in Artificial Intelligence and Applications, pages 133-182. IOS Press, 2021. URL: https://doi.org/10.3233/FAIA200987.
  16. Iulia Nica, Ingo Pill, Thomas Quaritsch, and Franz Wotawa. The route to success - A performance comparison of diagnosis algorithms. In Francesca Rossi, editor, IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013, pages 1039-1045. IJCAI/AAAI, 2013. URL: http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6597.
  17. Iulia Nica and Franz Wotawa. Condiag - computing minimal diagnoses using a constraint solver. In Proceedings of the 23rd International Workshop on Principles of Diagnosis, 2012. Google Scholar
  18. Ilkka Niemelä. Logic programs with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence, 25(3-4):241-273, 1999. URL: https://doi.org/10.1023/A:1018930122475.
  19. Ingo Pill and Thomas Quaritsch. Rc-tree: A variant avoiding all the redundancy in reiter’s minimal hitting set algorithm. In 2015 IEEE International Symposium on Software Reliability Engineering Workshops, ISSRE Workshops, Gaithersburg, MD, USA, November 2-5, 2015, pages 78-84. IEEE Computer Society, 2015. URL: https://doi.org/10.1109/ISSREW.2015.7392050.
  20. Liliana Marie Prikler and Franz Wotawa. Replication package for: Faster diagnosis with answer set programming. The replication package contains our implementation of IDIAG and the scripts we used to benchmark them as two gzipped tar archives. It does not include the test data. URL: https://doi.org/10.5281/zenodo.13850098.
  21. Raymond Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1):57-95, 1987. URL: https://doi.org/10.1016/0004-3702(87)90062-2.
  22. Roni Stern, Meir Kalech, Shelly Rogov, and Alexander Feldman. How many diagnoses do we need? Artificial Intelligence, 248:26-45, 2017. URL: https://doi.org/10.1016/j.artint.2017.03.002.
  23. Franz Wotawa. A variant of reiter’s hitting-set algorithm. Information Processing Letters, 79(1):45-51, 2001. URL: https://doi.org/10.1016/S0020-0190(00)00166-6.
  24. Franz Wotawa and David Kaufmann. Model-based reasoning using answer set programming. Applied Intelligence, 52(15):16993-17011, 2022. URL: https://doi.org/10.1007/S10489-022-03272-2.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail