Scalable Design Space Exploration via Answer Set Programming

Author Philipp Wanko



PDF
Thumbnail PDF

File

OASIcs.ICLP.2016.23.pdf
  • Filesize: 426 kB
  • 11 pages

Document Identifiers

Author Details

Philipp Wanko

Cite AsGet BibTex

Philipp Wanko. Scalable Design Space Exploration via Answer Set Programming. In Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016). Open Access Series in Informatics (OASIcs), Volume 52, pp. 23:1-23:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
https://doi.org/10.4230/OASIcs.ICLP.2016.23

Abstract

The design of embedded systems is becoming continuously more complex such that the application of efficient high level design methods are crucial for competitive results regarding design time and performance. Recently, advances in Boolean constraint solvers for Answer Set Programming (ASP) allow for easy integration of background theories and more control over the solving process. The goal of this research is to leverage those advances for system level design space exploration while using specialized techniques from electronic design automation that drive new application-originated ideas for multi-objective combinatorial optimization.
Keywords
  • Answer Set Programming
  • System Synthesis
  • Multi-Objective Optimization

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Santosh G. Abraham, B. Ramakrishna Rau, and Robert Schreiber. Fast Design Space Exploration Through Validity and Quality Filtering of Subsystem Designs. Technical report, Hewlett Packard, Compiler and Architecture Research, HP Laboratories Palo Alto, July 2000. Google Scholar
  2. B. Andres, M. Gebser, M. Glaß, C. Haubelt, F. Reimann, and T. Schaub. A combined mapping and routing algorithm for 3D NoCs based on ASP. In C. Haubelt and D. Timmermann, editors, Sechzehnter Workshop für Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV'13), pages 35-46. Institut für Angewandte Mikroelektronik und Datentechnik, Universität Rostock, 2013. Google Scholar
  3. B. Andres, M. Gebser, M. Glaß, C. Haubelt, F. Reimann, and T. Schaub. Symbolic system synthesis using answer set programming. In P. Cabalar and T. Son, editors, Proceedings of the Twelfth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR'13), volume 8148 of Lecture Notes in Artificial Intelligence, pages 79-91. Springer, 2013. Google Scholar
  4. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, 2003. Google Scholar
  5. T. Basten, M. Hendriks, L. Somers, and N. Trcka. Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems. In Proceedings of the International Conference on Formal Modeling and Analysis of Timed Systmes (FORMATS), pages 1-6, 2012. Google Scholar
  6. J. F. Benders. Partitioning Procedures for Solving Mixed-Variables Programming Problems. Numerische Mathemathik, 4(3):238-252, 1962. Google Scholar
  7. S. Bhattacharyya, G. Brebner, J. Janneck, J. Eker, C. von Platen, M. Mattavelli, and M. Raulet. OpenDF: A Dataflow Toolset for Reconfigurable Hardware and Multicore Systems. ACM SIGARCH Computer Architecture News, 36(5):29-35, 2009. Google Scholar
  8. A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2009. Google Scholar
  9. T. Blickle, J. Teich, and L. Thiele. System-Level Synthesis Using Evolutionary Algorithms. In Design Automation for Embedded Systems, 3, pages 23-62. 1998. Google Scholar
  10. J. R. Burch and D. L. Dill. Automatic Verification of Pipelined Microprocessor Control. In Proceedings of the International Conference on Computer Aided Verification (CAV), pages 68-80, 1994. Google Scholar
  11. K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley &Sons, Inc., Chichester, New York, Weinheim, Brisbane, Singapore, Toronto, 2001. Google Scholar
  12. M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set enumeration. In C. Baral, G. Brewka, and J. Schlipf, editors, Proceedings of the Ninth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR'07), volume 4483 of Lecture Notes in Artificial Intelligence, pages 136-148. Springer, 2007. Google Scholar
  13. M. Geilen and S. Stuijk. Worst-Case Performance Analysis of Synchronous Dataflow Scenarios. In Proceedings of the Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pages 125-134, 2010. Google Scholar
  14. A. Gerstlauer, C. Haubelt, A. D. Pimentel, T. P. Stefanov, D. D. Gajski, and J. Teich. Electronic System-Level Synthesis Methodologies. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(10):1517-1530, 2009. Google Scholar
  15. A. H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten, A. J. M. Moonen, M. J. G. Bekooij, B. D. Theelen, and M. R. Mousavi. Throughput Analysis of Synchronous Data Flow Graphs. In Proceedings of the International Conference on Application of Concurrency to System Design (ACSD), pages 25-36, 2006. Google Scholar
  16. A. H. Ghamarian, S. Stuijk, T. Basten, M. C. W. Geilen, and B. D. Theelen. Latency Minimization for Synchronous Data Flow Graphs. In Proceedings of the Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD), pages 189-196, 2007. Google Scholar
  17. M. Gries. Methods for Evaluating and Covering the Design Space during Early Design Development. Integration, The VLSI Journal, 38(2):131-183, 2004. Google Scholar
  18. S. Gunawan, Ali Farhang-Mehr, and Shapour Azarm. Multi-Level Multi-Objective Genetic Algorithm Using Entropy to Preserve Diversity. In Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization (EMO), pages 148-161, 2003. Google Scholar
  19. W. Haid, M. Keller, K. Huang, I. Bacivarov, and L. Thiele. Generation and Calibration of Compositional Performance Analysis Models for Multi-Processor Systems. In Proceedings of the International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS), pages 92-99, 2009. Google Scholar
  20. C. Haubelt, J. Teich, R. Feldmann, and B. Monien. SAT-Based Techniques in System Design. In Proceedings of the Design, Automation and Test in Europe (DATE), pages 1168-1169, 2003. Google Scholar
  21. J. N. Hooker and G. Ottosson. Logic-Based Benders Decomposition. Mathematical Programming, 96(1):33-60, 2003. Google Scholar
  22. E. Jackson, E. Kang, M. Dahlweid, D. Seifert, and T. Santen. Components, Platforms and Possibilities: Towards Generic Automation for MDA. In Proceedings of the International Conference on Embedded Software (EMSOFT), pages 39-48, 2010. Google Scholar
  23. J. Keinert, M. Streubühr, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt, J. Teich, and M. Meredith. SystemCoDesigner - An Automatic ESL Synthesis Approach by Design Space Exploration and Behavioral Synthesis for Streaming Applications. ACM Transactions on Design Automation of Electronic Systems (TODAES), 14(1):1-23, 2009. Google Scholar
  24. B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf. An Approach for Quantitative Analysis of Application-Specific Dataflow Architectures. In Proceedings of the Conference on Application-Specific Systems, Architectures and Processors (ASAP), pages 338-349, 1997. Google Scholar
  25. R. Kiesel, M. Streubühr, C. Haubelt, O. Löhlein, and J. Teich. Calibration and Validation of Software Performance Models for Pedestrian Detection Systems. In Proceedings of the International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS), pages 182-189, 2011. Google Scholar
  26. P. Kumar, D. B. Chokshi, and L. Thiele. A Satisfiability Approach to Speed Assignment for Distributed Real-Time Systems. In Proceedings of the Design, Automation and Test in Europe (DATE), pages 749-754, 2013. Google Scholar
  27. M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combining Convergence and Diversity in Evolutionary Multi-Objective Optimization. Evolutionary Computation, 10(3):263-282, 2002. Google Scholar
  28. C. Li and F. Manyà. MaxSAT. In Biere et al. [8], chapter 19, pages 613-631. Google Scholar
  29. V. Lifschitz and A. Razborov. Why are there so many loop formulas? ACM Transactions on Computational Logic, 7(2):261-268, 2006. Google Scholar
  30. W. Liu, Z. Gu, J. Xu, X. Wu, and Y. Ye. Satisfiability Modulo Graph Theory for Task Mapping and Scheduling on Multiprocessor Systems. IEEE Transactions on Parallel and Distributed Systems, 22(8):1382-1389, 2011. Google Scholar
  31. M. Lukasiewycz, M. Glaß, C. Haubelt, and J. Teich. SAT-Decoding in Evolutionary Algorithms for Discrete Constrained Optimization Problems. In Proceedings of the Congress on Evolutionary Computation, pages 935-942, 2007. Google Scholar
  32. M. Lukasiewycz, M. Glaß, C. Haubelt, and J. Teich. Efficient Symbolic Multi-Objective Design Space Exploration. In Proceedings of the Asia and South Pacific Design Automation Conference (ASPDAC), pages 691-696, 2008. Google Scholar
  33. S. Neema. System Level Synthesis of Adaptive Computing Systems. PhD thesis, Vanderbilt University, Nashville, Tennessee, 2001. Google Scholar
  34. R. Niemann and P. Marwedel. An Algorithm for Hardware/Software Partitioning Using Mixed Integer Linear Programming. Design Automation for Embedded Systems, 2(2):165-193, 1997. Google Scholar
  35. H. Nikolov, M. Thompson, T. Stefanov, A. D. Pimentel, S. Polstra, R. Bose, C. Zissulescu, and E. F. Deprettere. Daedalus: Toward Composable Multimedia MP-SoC Design. In Proceedings of the Design Automation Conference (DAC), pages 574-579, 2008. Google Scholar
  36. V. Pareto. Cours d'Économie Politique, volume 1. F. Rouge &Cie., 1896. Google Scholar
  37. F. Reimann, M. Glaß, C. Haubelt, M. Eberl, and J. Teich. Improving Platform-Based System Synthesis by Satisfiability Modulo Theories Solving. In Proceedings of the Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pages 135-144, 2010. Google Scholar
  38. O. Roussel and V. Manquinho. Pseudo-Boolean and cardinality constraints. In Biere et al. [8], chapter 22, pages 695-733. Google Scholar
  39. N. Satish, K. Ravindran, and K. Keutzer. A Decomposition-Based Constraint Optimization Approach for Statically Scheduling Task Graphs with Communication Delays to Multiprocessors. In Proceedings of the Design, Automation and Test in Europe (DATE), pages 57-62, 2007. Google Scholar
  40. T. Schlichter, C. Haubelt, and J. Teich. Improving EA-based Design Space Exploration by Utilizing Symbolic Feasibility Tests. In Proceedings of Genetic and Evolutionary Computation Conference> (GECCO), pages 1945-1952, 2005. Google Scholar
  41. H. M. Sheini and K. A. Sakallah. A Scalable Method for Solving Satisfiability of Integer Linear Arithmetic Logic. In Theory and Applications of Satisfiability Testing, pages 241-256, 2005. Google Scholar
  42. J. Teich and C. Haubelt. Digitale Hardware/Software-Systeme - Synthese und Optimierung. Springer, Berlin, Heidelberg, 2007. 2. erweiterte Auflage. Google Scholar
  43. L. Thiele, I. Bacivarov, W. Haid, and K. Huang. Mapping Applications to Tiled Multiprocessor Embedded Systems. In Proceedings of the International Conference on Application of Concurrency to System Design (ACSD), pages 29-40, 2007. Google Scholar
  44. L. Thiele and E. Wandeler. Performance Analysis of Distributed Embedded Systems. In Embedded Systems Handbook, pages 15.1-15.18. CRC Press, Boca Raton, FL, 2006. Google Scholar
  45. E. Zitzler, L. Thiele, M. Laumanns, C. Fonseca, and V. Grunert da Fonseca. Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation, 7(2):117-132, 2003. Google Scholar