OASIcs.NG-RES.2025.2.pdf
- Filesize: 0.75 MB
- 14 pages
Heterogeneous Multi-Processor Systems-on-Chip (MPSoCs) that combine multiple, heterogeneous processing units are becoming increasingly popular for a wide range of applications, including industrial applications, where complex real-time applications can benefit from the performance and flexibility they offer. However, deploying real-time applications with low latency requirements across multiple processing units on such MPSoCs remains a challenging problem, particularly when communication between processors is required on a time-critical path. Existing solutions generally rely on the presence of at least one full-featured, general-purpose operating system on the device, and do not cater to the requirements of distributed, low-latency real-time applications. In this paper, we investigate the performance, with a focus on latency, of different options for communication between CPUs, including inter-processor interrupts and shared memory communication via different memories, on the popular Xilinx Zynq UltraScale+ platform and propose a novel solution for communication between heterogeneous processing units that relies only on the availability of shared memory. Our solution is capable of achieving sub-microsecond latencies for signaling and the transfer of small amounts of data between processing units, making it suitable for deploying distributed, low-latency real-time applications.
Feedback for Dagstuhl Publishing