Co-Design of Systems-On-Chip for Sustainability

Authors Jan Spieck , Dominik Walter , Jan Waschkeit, Jürgen Teich



PDF
Thumbnail PDF

File

OASIcs.NG-RES.2025.3.pdf
  • Filesize: 1.43 MB
  • 12 pages

Document Identifiers

Author Details

Jan Spieck
  • Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
Dominik Walter
  • Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
Jan Waschkeit
  • Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
Jürgen Teich
  • Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

Cite As Get BibTex

Jan Spieck, Dominik Walter, Jan Waschkeit, and Jürgen Teich. Co-Design of Systems-On-Chip for Sustainability. In Sixth Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2025). Open Access Series in Informatics (OASIcs), Volume 128, pp. 3:1-3:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/OASIcs.NG-RES.2025.3

Abstract

This paper introduces a novel approach to the co-design of sustainable embedded systems through multi-objective design space exploration (DSE). We propose a two-phase methodology that optimizes both the multiprocessor system-on-chip (MPSoC) architecture and application mappings, considering sustainability, reliability, performance, and cost as optimization objectives of equal importance. Unlike existing approaches, our method thereby accounts for both operational and embodied emissions, providing a more comprehensive assessment of sustainability. The first phase employs intra-application DSEs to explore Pareto-optimal constraint graphs for each application. The second phase, an inter-application DSE, combines these results to explore sustainable target architectures and corresponding application mappings. Our approach incorporates detailed models for embodied emissions (scope 1 and scope 2), operational emissions, reliability, performance, and cost. The evaluation demonstrates that our sustainability-aware DSE is able to explore design spaces overlooked by traditional approaches, supported by superior results in four key objectives. This enables the development of more environmentally friendly embedded systems while still achieving high performance and reliability.

Subject Classification

ACM Subject Classification
  • Computer systems organization → Embedded and cyber-physical systems
  • Hardware → Power and energy
  • Hardware → Chip-level power issues
  • Computer systems organization → System on a chip
  • Social and professional topics → Sustainability
  • Hardware → Impact on the environment
Keywords
  • System-on-Chip
  • Sustainability
  • Multi-objective Optimization
  • Design Space Exploration
  • Embedded Systems
  • Carbon Emissions

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Athena Abdi and Hamid R. Zarandi. HYSTERY: A Hybrid Scheduling and Mapping Approach to Optimize Temperature, Energy Consumption and Lifetime Reliability of Heterogeneous Multiprocessor Systems. J. Supercomput., 74(5):2213-2238, 2018. URL: https://doi.org/10.1007/s11227-018-2248-2.
  2. Benny Akesson, Anca Mariana Molnos, Andreas Hansson, Jude Angelo Ambrose, and Kees Goossens. Composability and Predictability for Independent Application Development, verification, and execution. In Michael Hübner and Jürgen Becker, editors, Multiprocessor System-on-Chip - Hardware Design and Tool Integration, pages 25-56. Springer, 2011. URL: https://doi.org/10.1007/978-1-4419-6460-1_2.
  3. Nidhi Anantharajaiah, Tamim Asfour, Michael Bader, Lars Bauer, Jürgen Becker, Simon Bischof, Marcel Brand, Hans-Joachim Bungartz, Christian Eichler, Khalil Esper, Joachim Falk, Nael Fasfous, Felix Freiling, Andreas Fried, Michael Gerndt, Michael Glaß, Jeferson Gonzalez, Frank Hannig, Christian Heidorn, Jörg Henkel, Andreas Herkersdorf, Benedict Herzog, Jophin John, Timo Hönig, Felix Hundhausen, Heba Khdr, Tobias Langer, Oliver Lenke, Fabian Lesniak, Alexander Lindermayr, Alexandra Listl, Sebastian Maier, Nicole Megow, Marcel Mettler, Daniel Müller-Gritschneder, Hassan Nassar, Fabian Paus, Alexander Pöppl, Behnaz Pourmohseni, Jonas Rabenstein, Phillip Raffeck, Martin Rapp, Santiago Narváez Rivas, Mark Sagi, Franziska Schirrmacher, Ulf Schlichtmann, Florian Schmaus, Wolfgang Schröder-Preikschat, Tobias Schwarzer, Mohammed Bakr Sikal, Bertrand Simon, Gregor Snelting, Jan Spieck, Akshay Srivatsa, Walter Stechele, Jürgen Teich, Isaías A. Comprés Ureña, Ingrid Verbauwhede, Dominik Walter, Thomas Wild, Stefan Wildermann, Mario Wille, Michael Witterauf, and Li Zhang. Invasive Computing. FAU University Press, 2022. URL: https://doi.org/10.25593/978-3-96147-571-1.
  4. Anne Auger, Johannes Bader, Dimo Brockhoff, and Eckart Zitzler. Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications. Theo. Comp. Sci., 425:75-103, 2012. URL: https://doi.org/10.1016/J.TCS.2011.03.012.
  5. M Garcia Bardon, P Wuytens, L-Å Ragnarsson, G Mirabelli, D Jang, G Willems, A Mallik, A Spessot, J Ryckaert, and B Parvais. DTCO including sustainability: Power-performance-area-cost-environmental score (PPACE) analysis for logic technologies. In 2020 IEDM, pages 41-4. IEEE, 2020. Google Scholar
  6. Tilera Corporation. Tile Processor Architecture Overview for the Tile-Gx Series. https://cdn.manesht.ir/17871___210769647-UG130-ArchOverview-TILE-Gx.pdf, 2012. [Online; accessed 04-July-2023].
  7. Benoît Dupont de Dinechin, Renaud Ayrignac, Pierre-Edouard Beaucamps, Patrice Couvert, Benoit Ganne, Pierre Guironnet de Massas, François Jacquet, Samuel Jones, Nicolas Morey Chaisemartin, Frédéric Riss, and Thierry Strudel. A Clustered Manycore Processor Architecture for Embedded and Accelerated Applications. In HPEC 2013, Waltham, MA, USA, September 10-12, 2013, pages 1-6. IEEE, 2013. URL: https://doi.org/10.1109/HPEC.2013.6670342.
  8. Robert P. Dick. Embedded System Synthesis Benchmarks Suite (E3S), 2002. Accessed September 11, 2024. URL: https://ziyang.eecs.umich.edu/~dickrp/e3s/.
  9. Lieven Eeckhout. Kaya for Computer Architects: Toward Sustainable Computer Systems. IEEE Micro, 43(1):9-18, 2023. URL: https://doi.org/10.1109/MM.2022.3218034.
  10. Robert Falkner. The Paris Agreement and the new logic of international climate politics. International Affairs, 92(5):1107-1125, 2016. Google Scholar
  11. Charlotte Freitag, Mike Berners-Lee, Kelly Widdicks, Bran Knowles, Gordon S. Blair, and Adrian Friday. The real climate and transformative impact of ICT: A critique of estimates, trends, and regulations. Patterns, 3(8):100576, 2022. URL: https://doi.org/10.1016/J.PATTER.2022.100576.
  12. Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin S Lee, Gu-Yeon Wei, David Brooks, and Carole-Jean Wu. Chasing carbon: The elusive environmental footprint of computing. In HPCA, pages 854-867. IEEE, 2021. URL: https://doi.org/10.1109/HPCA51647.2021.00076.
  13. Jan Heisswolf, Ralf König, and Jürgen Becker. A Scalable NoC Router Design Providing QoS Support Using Weighted round robin scheduling. In ISPA, Leganes, Madrid, Spain, July 10-13, 2012, pages 625-632. IEEE Computer Society, 2012. URL: https://doi.org/10.1109/ISPA.2012.93.
  14. Jason Howard, Saurabh Dighe, Sriram R. Vangal, Gregory Ruhl, Nitin Borkar, Shailendra Jain, Vasantha Erraguntla, Michael Konow, Michael Riepen, Matthias Gries, Guido Droege, Tor Lund-Larsen, Sebastian Steibl, Shekhar Borkar, Vivek K. De, and Rob F. Van der Wijngaart. A 48-Core IA-32 Processor in 45 nm CMOS Using On-Die Message-Passing and DVFS for performance and power scaling. IEEE J. Solid State Circuits, 46(1):173-183, 2011. URL: https://doi.org/10.1109/JSSC.2010.2079450.
  15. Jung Yoon Hwang. Spatial stochastic processes for yield and reliability management with applications to nano electronics. Texas A&M University, 2004. Google Scholar
  16. Texas Instruments. MTBF and FIT Rate Estimator, 2024. URL: https://www.ti.com/quality/docs/estimator.tsp.
  17. Nikhil Krishnan, Sarah Boyd, Ajay Somani, Sebastien Raoux, Daniel Clark, and David Dornfeld. A hybrid life cycle inventory of nano-scale semiconductor manufacturing. Environmental science & technology, 42(8):3069-3075, 2008. Google Scholar
  18. Martin Lukasiewycz, Michael Glaß, Felix Reimann, and Jürgen Teich. Opt4J: A Modular Framework for Meta-Heuristic Optimization. In GECCO, Dublin, Ireland, July 12-16, pages 1723-1730. ACM, 2011. URL: https://doi.org/10.1145/2001576.2001808.
  19. Behnaz Pourmohseni, Michael Glaß, Jörg Henkel, Heba Khdr, Martin Rapp, Valentina Richthammer, Tobias Schwarzer, Fedor Smirnov, Jan Spieck, Jürgen Teich, Andreas Weichslgartner, and Stefan Wildermann. Hybrid Application Mapping for Composable Many-Core Systems: Overview and Future Perspective. Journal of Low Power Electronics and Applications, 10:1-37, 2020. URL: https://doi.org/10.3390/jlpea10040038.
  20. Basireddy Karunakar Reddy, Amit Kumar Singh, Bashir M. Al-Hashimi, and Geoff V. Merrett. AdaMD: Adaptive Mapping and DVFS for Energy-Efficient Heterogeneous multicores. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 39(10):2206-2217, 2020. URL: https://doi.org/10.1109/TCAD.2019.2935065.
  21. Tobias Schwarzer, Andreas Weichslgartner, Michael Glaß, Stefan Wildermann, Peter Brand, and Jürgen Teich. Symmetry-Eliminating Design Space Exploration for Hybrid Application mapping on many-core architectures. TCAD, 37(2):297-310, 2018. URL: https://doi.org/10.1109/TCAD.2017.2695894.
  22. Jan Spieck, Stefan Wildermann, and Jürgen Teich. On Transferring Application Mapping Knowledge Between Differing MPSoC architectures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 41(11):4289-4300, 2022. URL: https://doi.org/10.1109/TCAD.2022.3197527.
  23. Jan Spieck, Stefan Wildermann, and Jürgen Teich. A Learning-based Methodology for Scenario-aware Mapping of Soft Real-time applications onto heterogeneous mpsocs. ACM Trans. Design Autom. Electr. Syst., 28(1):4:1-4:40, 2023. URL: https://doi.org/10.1145/3529230.
  24. Jan Spieck, Stefan Wildermann, and Jürgen Teich. A Scenario-Based DVFS-Aware Hybrid Application Mapping Methodology for MPSoCs. ACM Trans. Des. Autom. Electron. Syst., 29(4), June 2024. URL: https://doi.org/10.1145/3660633.
  25. Chetan Choppali Sudarshan, Nikhil Matkar, Sarma B. K. Vrudhula, Sachin S. Sapatnekar, and Vidya A. Chhabria. ECO-CHIP: Estimation of Carbon Footprint of Chiplet-based Architectures for sustainable VLSI. In HPCA, Edinburgh, United Kingdom, March 2-6, 2024, pages 671-685. IEEE, 2024. URL: https://doi.org/10.1109/HPCA57654.2024.00058.
  26. Heike Trautmann, Tobias Wagner, and Dimo Brockhoff. R2-EMOA: Focused Multiobjective Search Using R2-Indicator-Based selection. In Giuseppe Nicosia and Panos M. Pardalos, editors, LION 7, Catania, Italy, January 7-11, 2013, Revised Selected Papers, volume 7997, pages 70-74. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-44973-4_8.
  27. Peter van Stralen and Andy D. Pimentel. Scenario-Based Design Space Exploration of MPSoCs. In ICCD 2010, 3-6 October 2010, Amsterdam, The Netherlands, Proceedings, pages 305-312, 2010. URL: https://doi.org/10.1109/ICCD.2010.5647727.
  28. Dominik Walter, Marcel Brand, Christian Heidorn, Michael Witterauf, Frank Hannig, and Jürgen Teich. ALPACA: an Accelerator Chip for Nested Loop Programs. In IEEE International Symposium on Circuits and Systems, ISCAS 2024, Singapore, May 19-22, 2024, pages 1-5. IEEE, 2024. URL: https://doi.org/10.1109/ISCAS58744.2024.10558549.
  29. World Resources Institute, C40 Cities Climate Leadership Group, and ICLEI Local Governments for Sustainability. Global Protocol for Community-Scale Greenhouse Gas Emission Inventories. World Resources Institute, Washington, DC, 2014. [Online; accessed 2024-09-16]. Google Scholar
  30. Gary G. Yen and Zhenan He. Performance Metric Ensemble for Multiobjective Evolutionary Algorithms. IEEE Trans. Evol. Comput., 18(1):131-144, 2014. URL: https://doi.org/10.1109/TEVC.2013.2240687.
  31. Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput., 3(4):257-271, 1999. URL: https://doi.org/10.1109/4235.797969.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail