Traversal-Invariant Characterizations of Logarithmic Space

Authors Siddharth Bhaskar , Steven Lindell, Scott Weinstein



PDF
Thumbnail PDF

File

OASIcs.Tannen.2.pdf
  • Filesize: 0.62 MB
  • 17 pages

Document Identifiers

Author Details

Siddharth Bhaskar
  • Department of Computer Science, James Madison University, Harrisonburg, VA, USA
Steven Lindell
  • Department of Computer Science, Haverford College, Haverford, PA, USA
Scott Weinstein
  • Department of Philosophy, University of Pennsylvania, Philadelphia, PA, USA

Cite AsGet BibTex

Siddharth Bhaskar, Steven Lindell, and Scott Weinstein. Traversal-Invariant Characterizations of Logarithmic Space. In The Provenance of Elegance in Computation - Essays Dedicated to Val Tannen. Open Access Series in Informatics (OASIcs), Volume 119, pp. 2:1-2:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/OASIcs.Tannen.2

Abstract

We give a novel descriptive-complexity theoretic characterization of L and NL computable queries over finite structures using traversal invariance. We summarize this as (N)L = FO + (breadth-first) traversal-invariance.

Subject Classification

ACM Subject Classification
  • Theory of computation → Finite Model Theory
Keywords
  • Model theory
  • finite model theory
  • descriptive complexity theory
  • logarithmic space
  • graph traversals

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Holger Bock Axelsen. Reversible multi-head finite automata characterize reversible logarithmic space. In Adrian-Horia Dediu and Carlos Martín-Vide, editors, Language and Automata Theory and Applications, pages 95-105, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. Google Scholar
  2. Derek Corneil and Richard Krueger. A unified view of graph searching. SIAM J. Discret. Math., 22(4):1259-1276, July 2008. Google Scholar
  3. Yuri Gurevich. Toward logic tailored for computational complexity. In M. M. Ricther et al., editor, Computation and Proof Theory, Lecture Notes in Mathematics 1104, pages 175-216. Springer-Verlag, 1984. Google Scholar
  4. Juris Hartmanis. On non-determinancy in simple computing devices. Acta Informatica, 1(4):336-344, December 1972. Google Scholar
  5. Wilfrid Hodges. Model Theory. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1993. Google Scholar
  6. Neil Immerman. Relational queries computable in polynomial time. Information and Control, 68:86-104, 1986. Google Scholar
  7. Leonid Libkin. Elements of Finite Model Theory. Springer, Berlin, Heidelberg, 2004. Google Scholar
  8. Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17:1-17:24, September 2008. Google Scholar
  9. Nicole Schweikardt. A short tutorial on order-invariant first-order logic. In CSR 2013, June 2013. Google Scholar
  10. Martin Tompa. Introduction to Computational Complexity. Lecture notes, 1991. URL: https://homes.cs.washington.edu/~tompa/papers/532.pdf.
  11. Moshe Vardi. The complexity of relational query languages. In STOC82, pages 137-146, 1982. Google Scholar